ADAPTABILIDADE E ESTABILIDADE DAS CULTIVARES DE TRIGO AVALIADAS NO EECT 2011

Ricardo Lima de Castro¹, Eduardo Caierão¹, João Leonardo Fernandes Pires¹, Jacson Zuchi², Rogério Ferreira Aires², Adeliano Cargnin¹, André Rosa³, Felipe Zambonato⁴, Fernando Machado dos Santos⁵, Francisco de Assis Franco⁶, Giandro Duarte Teixeira², João Américo Wordell Filho⁷, José Geraldo Ozelame⁸, Juliano Almeida⁹, Liege Camargo da Costa⁸, Luiz Carlos Vieira⁷, Marcelo de Carli Toigo², Márcio Só e Silva¹, Marcos Garrafa¹⁰, Maria da Graça de Souza Lima⁸, Nilton Luis Gabe¹¹, Ottoni de Souza Rosa¹², Ottoni de Souza Rosa Filho³, Pedro Luiz Scheeren¹, Roberto Carbonera¹³, Rodrigo Oliboni¹², Rosemari de Fátima Costa Camargo², Vanderlei Doneda Tonon¹⁴ e Volmir Sérgio Marchioro⁶

¹Embrapa Trigo, Rod. BR 285, km 294, CEP 99001-970, Passo Fundo, RS. Email: rlcastro@cnpt.embrapa.br; ²Fepagro Nordeste, Rod. BR 285, km 126, CEP 95000-000, Vacaria, RS; ³Biotrigo Genética, Rua João Battisti, 71, CEP 99050-380, Passo Fundo, RS; ⁴CCGL TEC, Rod. RS 342, km 149, CEP 98100-970, Cruz Alta, RS; ⁵IFRS, Campus Sertão, Rod. RS 135, km 25, CEP 99170-000, Sertão, RS; ⁶Coodetec, Rod. BR 467, km 98, CEP 85813-450, Cascavel, PR; ⁷Epagri, CEPAF, Rua Servidão Ferdinando Tusset, s/n°, CEP 89801-970, Chapecó, SC; ⁸Fepagro Sementes, Rua Estação Experimental, s/n°, CEP 98130-000, Júlio de Castilhos, RS; ⁹FAPA, Colônia Vitória – Entre Rios, CEP 85139-400, Guarapuava, PR; ¹⁰SETREM, Av. Santa Rosa, 2405, CEP 98970-000, Três de Maio, RS; ¹¹Fepagro Cereais, Rod. BR 287, km 5, CEP 97670-000, São Borja, RS; ¹²OR Sementes, Rua João Battisti, 71, CEP 99050-380, RS; ¹³Unijuí, Rua Francisco, 501, CEP 98700-000, Ijuí, RS; ¹⁴DNA Melhoramento Vegetal, Av. Venancio Aires, 1611, CEP 98005-020, Cruz Alta, RS.

As análises de adaptabilidade e estabilidade proporcionam informações pormenorizadas sobre o comportamento de cada genótipo frente às variações

de ambiente, possibilitando a identificação de cultivares com comportamento previsível e responsivas a condições ambientais específicas ou amplas. Conceitualmente, adaptabilidade refere-se à capacidade dos genótipos responderem vantajosamente à melhoria do ambiente. Já estabilidade refere-se à capacidade dos genótipos terem comportamento altamente previsível em função das variações de ambiente. Dentre os conceitos mais recentes, considera-se ideal a cultivar com alto potencial produtivo, alta estabilidade, pouco sensível às condições adversas dos ambientes desfavoráveis, mas capaz de responder satisfatoriamente à melhoria do ambiente. O objetivo deste trabalho foi analisar a adaptabilidade e estabilidade de rendimento de grãos dos genótipos avaliados no Ensaio Estadual de Cultivares de Trigo, no ano 2011 (EECT 2011), nos Estados do Rio Grande do Sul, de Santa Catarina e na região mais fria do Paraná.

Foram estudados os desempenhos (em kg/ha) de trinta cultivares em 16 ambientes (Coxilha, Cruz Alta – época 1, Cruz Alta – época 2, Júlio de Castilhos, Não-Me-Toque, Passo Fundo – época 1, Passo Fundo – época 2, Sertão, Augusto Pestana, São Borja, São Luis Gonzaga, Três de Maio, Campos Novos, Abelardo Luz, Chapecó e Guarapuava), correspondentes aos experimentos válidos do EECT 2011. A análise conjunta dos ensaios foi efetuada, após verificação da homogeneidade das variâncias residuais, adotando-se o modelo misto (efeito de cultivar fixo e de ambiente aleatório). A análise de adaptabilidade e estabilidade foi realizada pelo método da distância em relação à cultivar ideal, ponderada pelo coeficiente de variação residual, proposto por Carneiro (1998) – Tabela 1. A atribuição de maior peso aos ambientes com maior precisão experimental foi realizada multiplicando-se o estimador da medida de adaptabilidade e estabilidade de comportamento (parâmetro MAEC) pelo fator de ponderação f, dado a seguir:

$$f = \frac{CV_{j}}{CVT}$$

em que:

CV_j = coeficiente de variação residual no ambiente j;

CVT = soma dos coeficientes de variação residual nos ambientes.

A cultivar ideal (hipotética ou referencial) foi definida com base no modelo estatístico proposto por Carneiro (1998), qual seja:

$$Y_{mi} = b_{0m} + b_{1m}I_{i} + b_{2m}T(I_{i})$$

em que:

Y_{mi} = resposta da cultivar ideal no ambiente j;

 b_{0m} = produtividade máxima, em kg/ha, constatada no experimento (considerando todos os ambientes);

 I_i = indice ambiental;

$$T(I_i) = 0 \text{ se } I_i < 0;$$

 $T(I_j) = I_j - \bar{I}_+$ se $I_j > 0$, sendo \bar{I}_+ igual a média dos índices (I_j) positivos;

 $b_{1m} = 0.5$ (pouco sensível às condições adversas dos ambientes desfavoráveis);

 $b_{2m} = 1$ (responsivo às condições favoráveis; $b_{1m} + b_{2m} = 1,5$).

As estimativas (P_i) do parâmetro MAEC, em termos gerais ou específicos a ambientes favoráveis ou desfavoráveis, foram submetidas ao teste de normalidade de Lilliefors. No caso em que a hipótese de nulidade do teste foi aceita (ou seja, quando foi considerado razoável estudar os dados através da distribuição normal), foram destacadas as cultivares com estimativas P_i superiores ao valor correspondente ao z = 1,04 (15% superiores, considerando a curva normal padronizada). No caso em que a hipótese de nulidade foi rejeitada (não sendo razoável o estudo dos dados através da distribuição normal), foram identificadas 15% das cultivares com os menores valores de P_i (menor distância em relação à cultivar ideal = maior adaptabilidade e estabilidade de comportamento).

As análises estatísticas foram realizadas com o auxílio do programa computacional GENES (Cruz, 2006).

As estimativas do parâmetro MAEC, empregando o método da distância em relação à cultivar ideal, ponderada pelo coeficiente de variação residual, permitiu destacar as seguintes cultivares:

a) <u>Adaptabilidade e estabilidade geral</u> (melhor desempenho em todos os ambientes):

- Topázio

- Fundacep Horizonte
- Turquesa
- TBIO Pioneiro
- Ametista

b) Melhor desempenho em ambientes favoráveis:

- Quartzo
- TBIO Itaipu
- Turquesa
- Mirante
- Topázio
- BRS 329

c) Melhor desempenho em ambientes desfavoráveis:

- Topázio
- Fundacep Horizonte
- Ametista
- Turquesa
- TBIO Pioneiro

As cultivares de trigo avaliadas diferem quanto à adaptabilidade e estabilidade de produção, sendo possível identificar, pelo método da distância em relação à cultivar ideal, ponderada pelo coeficiente de variação residual (Carneiro, 1988), cultivares de trigo com maior adaptação às condições gerais de cultivo no Sul do Brasil ou com adaptação específica a ambientes favoráveis ou desfavoráveis.

Referências bibliográficas

CARNEIRO, P.C.S. **Novas** metodologias de análise da adaptabilidade e estabilidade de comportamento. Viçosa: UFV, 1998. 168p. Tese (Doutorado em Genética e Melhoramento) - Programa de Pós-Graduação em Genética e Melhoramento. Universidade Federal de Viçosa, 1998.

CRUZ, C.D. Programa Genes: biometria. Viçosa: UFV, 2006. 382p.

Tabela 1. Estimativas do parâmetro MAEC (medida de adaptabilidade e estabilidade de comportamento) em termos gerais (MAEC - P_i) e específicos aos ambientes favoráveis (MAEC - P_{if}) e desfavoráveis (MAEC - P_{id}), pelo método da diferença em relação à cultivar ideal (Carneiro, 1998). X_{ij} é a produtividade da i-ésima cultivar no j-ésimo ambiente; Y_{mj} é a resposta da cultivar ideal no ambiente j; a é o número total de ambientes; f é o número de ambientes favoráveis; e d é o número de ambientes desfavoráveis.

MAEC - P _i	MAEC - P _{if}	MAEC - P _{id}
Total de ambientes	Ambientes favoráveis	Ambientes desfavoráveis
$P_{i} = \frac{\sum_{j=1}^{a} (X_{ij} - Y_{mj})^{2}}{2a}$	${ m P_{if}} = rac{{\sum\limits_{{ m j=1}}^{ m f}}{\left({{ m X_{ij}} - { m Y_{mj}}} ight)^2}}{2{ m f}}$	$P_{id} = \frac{\sum_{j=1}^{d} (X_{ij} - Y_{mj})^{2}}{2d}$