20,376 research outputs found

    A new anti-neutrino detection technique based on positronium tagging with plastic scintillators

    Full text link
    The main signature for anti-neutrino detection in reactor and geo-neutrino experiments based on scintillators is provided by the space-time coincidence of positron and neutron produced in the Inverse Beta Decay reaction. Such a signature strongly suppresses backgrounds and allows for measurements performed underground with a relatively high signal-to-background ratio. In an aboveground environment, however, the twofold coincidence technique is not sufficient to efficiently reject the high background rate induced by cosmogenic events. Enhancing the positron-neutron twofold coincidence efficiency has the potential to pave the way future aboveground detectors for reactor monitoring. We propose a new detection scheme based on a threefold coincidence, between the positron ionization, the ortho-positronium (o-Ps) decay, and the neutron capture, in a sandwich detector with alternated layers of plastic scintillator and aerogel powder. We present the results of a set of dedicated measurements on the achievable light yield and on the o-Ps formation and lifetime. The efficiencies for signal detection and background rejection of a preliminary detector design are also discussed.Comment: 18 pages, 10 figure

    Measurement of ortho-Positronium Properties in Liquid Scintillators

    Get PDF
    Pulse shape discrimination in liquid scintillator detectors is a well-established technique for the discrimination of heavy particles from light particles. Nonetheless, it is not efficient in the separation of electrons and positrons, as they give rise to indistinguishable scintillator responses. This inefficiency can be overtaken through the exploitation of the formation of ortho-Positronium (o-Ps), which alters the time profile of light pulses induced by positrons. We characterized the o-Ps properties in the most commonly used liquid scintillators, i.e. PC, PXE, LAB, OIL and PC + PPO. In addition, we studied the effects of scintillator doping on the o-Ps properties for dopants currently used in neutrino experiments, Gd and Nd. Further measurements for Li-loaded and Tl-loaded liquid scintillators are foreseen. We found that the o-Ps properties are suitable for enhancing the electron-positron discrimination.Comment: 4 pages, 1 figure. Contribution to proceedings of the Low Radioactivity Techniques 2013 Workshop at LNGS, Assergi (AQ), Italy, April 10-12 201

    Linking food web functioning and habitat diversity for an ecosystem based management: A Mediterranean lagoon case-study

    Get PDF
    We propose a modelling approach relating the functioning of a transitional ecosystem with the spatial extension of its habitats. A test case is presented for the lagoon of Venice, discussing the results in the context of the application of current EU directives. The effects on food web functioning due to changes related to manageable and unmanageable drivers were investigated. The modelling procedure involved the use of steady-state food web models and network analysis, respectively applied to estimate the fluxes of energy associated with trophic interactions, and to compute indices of food web functioning. On the long term (hundred years) temporal scale, the model indicated that the expected loss of salt marshes will produce further changes at the system level, with a lagoon showing a decrease in the energy processing efficiency. On the short term scale, simulation results indicated that fishery management accompanied by seagrass restoration measures would produce a slight transition towards a more healthy system, with higher energy cycling, and maintaining a good balance between processing efficiency and resilience. Scenarios presented suggest that the effectiveness of short term management strategies can be better evaluated when contextualized in the long term trends of evolution of a system. We also remark the need for further studying the relationship between habitat diversity and indicators of food web functioning

    The regular cosmic string in Born-Infeld gravity

    Full text link
    It is shown that Born-Infeld gravity --a high energy deformation of Einstein gravity-- removes the singularities of a cosmic string. The respective vacuum solution results to be free of conical singularity and closed timelike curves. The space ends at a minimal circle where the curvature invariants vanish; but this circle cannot be reached in a finite proper time.Comment: 4 pages, submitted to Proceedings of Spanish Relativity Meeting 2010 (ERE2010, Granada, Spain

    Optimal path for a quantum teleportation protocol in entangled networks

    Get PDF
    Bellman's optimality principle has been of enormous importance in the development of whole branches of applied mathematics, computer science, optimal control theory, economics, decision making, and classical physics. Examples are numerous: dynamic programming, Markov chains, stochastic dynamics, calculus of variations, and the brachistochrone problem. Here we show that Bellman's optimality principle is violated in a teleportation problem on a quantum network. This implies that finding the optimal fidelity route for teleporting a quantum state between two distant nodes on a quantum network with bi-partite entanglement will be a tough problem and will require further investigation.Comment: 4 pages, 1 figure, RevTeX

    Relativistic descriptions of final-state interactions in neutral-current neutrino-nucleus scattering at MiniBooNE kinematics

    Full text link
    The analysis of the recent neutral-current neutrino-nucleus scattering cross sections measured by the MiniBooNE Collaboration requires relativistic theoretical descriptions also accounting for the role of final state interactions. In this work we evaluate differential cross sections with the relativistic distorted-wave impulse-approximation and with the relativistic Green's function model to investigate the sensitivity to final state interactions. The role of the strange-quark content of the nucleon form factors is also discussed.Comment: 8 pages, 5 figure

    Anomalies and O-plane charges in orientifolded brane tilings

    Full text link
    We investigate orientifold of brane tilings. We clarify how the cancellations of gauge anomaly and Witten's anomaly are guaranteed by the conservation of the D5-brane charge. We also discuss the relation between brane tilings and the dual Calabi-Yau cones realized as the moduli spaces of gauge theories. Two types of flavor D5-branes in brane tilings and corresponding superpotentials of fundamental quark fields are proposed, and it is shown that the massless loci of these quarks in the moduli space correctly reproduce the worldvolume of flavor D7-branes in the Calabi-Yau cone dual to the fivebrane system.Comment: 46 pages, 19 figure

    Toric AdS4/CFT3 duals and M-theory Crystals

    Full text link
    We study the recently proposed crystal model for three dimensional superconformal field theories arising from M2-branes probing toric Calabi-Yau four-fold singularities. We explain the algorithms mapping a toric Calabi-Yau to a crystal and vice versa, and show how the spectrum of BPS meson states fits into the crystal model.Comment: 24 pages, 24 figure

    Morphing Attack Potential

    Get PDF
    In security systems the risk assessment in the sense of common criteria testing is a very relevant topic; this requires quantifying the attack potential in terms of the expertise of the attacker, his knowledge about the target and access to equipment. Contrary to those attacks, the recently revealed morphing attacks against Face Recognition Systems (FRSs) can not be assessed by any of the above criteria. But not all morphing techniques pose the same risk for an operational face recognition system. This paper introduces with the Morphing Attack Potential (MAP) a consistent methodology, that can quantify the risk, which a certain morphing attack creates

    Clustering of educational building load data for defining healthy and energy-efficient management solutions of integrated HVAC systems

    Get PDF
    The COVID-19 pandemic is changing the way individuals, worldwide, feel about staying in public indoor spaces. A strict control of indoor air quality and of people's presence in buildings will be the new normal, to ensure a healthy and safe environment. Higher ventilation rates with fresh air are expected to be a requirement, especially in educational buildings, due to their high crowding index and social importance. Yet, in this framework, an increased use of primary energy may be overlooked. This paper offers a methodology to efficiently manage complex HVAC systems in educational buildings, concurrently considering the fundamental goals of occupants' health and energy sustainability. The proposed fourstep procedure includes: dynamic simulation of the building, to generate synthetic energy loads; clustering of the energy data, to identify and predict typical building use profiles; day-ahead planning of energy dispatch, to optimize energy efficiency; dynamic adjustment of air changes, to guarantee a safe indoor air quality. Clustering and forecasting energy needs are expected to become particularly effective in a highly regulated context. The technique has been tested on two university classroom buildings, considering pre-lockdown attendance. This notwithstanding, quality and significance of the obtained thermal energy clusters push towards a benchmark post-pandemic application
    corecore