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Abstract. The COVID-19 pandemic is changing the way individuals, 

worldwide, feel about staying in public indoor spaces. A strict control of 

indoor air quality and of people’s presence in buildings will be the new 

normal, to ensure a healthy and safe environment. Higher ventilation rates 

with fresh air are expected to be a requirement, especially in educational 

buildings, due to their high crowding index and social importance. Yet, in 

this framework, an increased use of primary energy may be overlooked. 

This paper offers a methodology to efficiently manage complex HVAC 

systems in educational buildings, concurrently considering the fundamental 

goals of occupants’ health and energy sustainability. The proposed four-

step procedure includes: dynamic simulation of the building, to generate 

synthetic energy loads; clustering of the energy data, to identify and predict 

typical building use profiles; day-ahead planning of energy dispatch, to 

optimize energy efficiency; dynamic adjustment of air changes, to 

guarantee a safe indoor air quality. Clustering and forecasting energy needs 

are expected to become particularly effective in a highly regulated context. 

The technique has been tested on two university classroom buildings, 

considering pre-lockdown attendance. This notwithstanding, quality and 

significance of the obtained thermal energy clusters push towards a 

benchmark post-pandemic application.  

1 Introduction 

The outbreak of COVID-19 pandemic has brought global attention to the need of a strict 

indoor air quality control, to prevent airborne virus transmission and avoid unsustainable 

lockdown of activities in crowded indoor spaces. Educational buildings have been shut in 

an early phase of the emergency, due to the epidemic risk associated with the high density 

of young, socially interacting, and often asymptomatic individuals. Post-lockdown 

strategies for reopening these spaces involve strict regimentation of people’s presence and 

implementation of operating-room-like air changes. Albeit effective in times of health 

 
*
 Corresponding author: alessandro.franco@ing.unipi.it 

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons 
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

E3S Web of Conferences 197, 03001 (2020)
75° National ATI Congress

https://doi.org/10.1051/e3sconf/202019703001



emergency, these solutions are highly energy-consuming and, on the long term, contrast to 

the equally important climate emergency. If on one hand it is not likely that people’s 

presence in indoor spaces will return to be loosely regulated as in the pre-pandemic era, on 

the other hand, there is plenty of room to optimize the energy management of HVAC 

systems and of the integrated energy-generation and storage devices, without compromising 

on the air quality levels required by health authorities. In this respect, correctly forecasting 

the profiles of building energy needs, including ventilation, becomes paramount, so that 

daily energy generation and dispatch can be appropriately planned to dynamically meet 

those demands in the most energy-efficient and environmental-friendly way. With this aim, 

the adoption of clustering techniques to process energy data is a promising way of dealing 

with buildings having a somehow predictable occupation, such as educational buildings, 

and particularly in the aftermath of a respiratory virus pandemic, when occupancy is 

expected to be strictly controlled. 

Worldwide, in 2018, buildings and construction sector accounted for 36% of final 

energy use and 39% of energy and process-related carbon dioxide (CO2) emissions [1]. The 

energy breakdown by different end-uses in 2015 for the EU-28 countries [2] shows that 

heating and cooling accounted for almost 50% of the total final energy demand. Official 

data by the Italian Ministry of Education, University and Research show that 55% of 

educational buildings have been built before 1976. Several national studies on the state of 

these buildings report the urgent need of deep refurbishment for energetic purposes, 

together with anti-fire and anti-seismic reasons [3-4]. In this context, educational buildings, 

being mainly public, highly visible, and socially strategic, must set the example not only 

keeping a high standard in occupational health (health risk factors are thoroughly reviewed 

in [5]), but also in terms of high energy efficiency and low environmental impact. 

In contrast to the above objectives, schools and universities are places where students 

and teachers spend most of their time in crowded indoor spaces, with subsequently critical 

energy needs, particularly for ventilation and air conditioning purposes. Correctly sized 

HVAC systems with appropriate controls guarantee that the required quality of indoor air is 

maintained at any time. However, especially in times of pandemic, when these quality 

levels are inevitably high for public health reasons, an increased effort must be made to 

accomplish the air-quality goals with reduced energy expenses. 

New normal solutions, as mentioned, will concurrently be respectful of occupants’ 

health, of energy, and of the environment. As a novel contribution to this aim, the present 

paper proposes a general procedure that is based on dynamic simulation of the building, 

clustering of energy demand data, and day-ahead planning of energy systems operation for 

minimization of non-renewable primary energy uses, followed by a variable air volume 

(VAV) ventilation, based on actual people’s presence, to keep concentration of pollutants 

and airborne microorganisms below risk thresholds. 

The paper is structured as follows: in the next section, clustering approaches applied to 

the energy needs of buildings will be reviewed, showing the usefulness of this data-

processing technique; then, in Section 3, the proposed energy-management procedure will 

be illustrated, starting from the dynamic simulation of the building, up to the identification 

of the optimal energy-dispatch sequence in each cluster of forecast daily loads and the real-

time control of air changes necessary to maintain a healthy indoor environment; finally, in 

Section 4, dynamic simulation and data clustering will be applied to the thermal energy 

demand profiles of two classroom buildings of the University of Pisa, implementing actual 

pre-pandemic attendance, which is a more challenging problem than the one posed by 

future paradigms that involve a programmed presence and space distribution of students in 

classrooms.  
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2 Clustering of building thermal load data 

Clustering of time-series signals is an important area of research in several fields [6], 

such as economics, engineering, finance, medicine, biology, physics, geology, and many 

others. Clustering refers to the unsupervised ability to aggregate similar objects together, 

and the basic clustering operation corresponds to take a set of N objects and group them 

into a reduced number of K clusters. Apart from the employed algorithm, chosen among the 

large variety of available ones [7], there are three main motivations for doing so. First, a 

good clustering has predictive power; clustering leads to a more efficient description of the 

available data and helps in planning better actions. Secondly, a cluster allows to compress a 

large amount of data into a single information, corresponding to the centre of the cluster, 

the so-called centroid. The third reason for clustering is to identify the outliers, i.e., some 

particular conditions in which clusters fail to accurately represent the original data. 

The application of clustering techniques to building energy-use data is quite recent. 

Thanks to the increasing availability of reliable and economic metering devices, data 

acquisition and data storage systems, long time series of energy loads can be collected in 

databases and then processed by automated software. Different algorithms have been 

effectively applied to building monitoring data for defining representative energy-use 

profiles [8]. From the analysis of the energy patterns corresponding to each of the obtained 

clusters, conditions of energy misuse can be exposed, and energy-saving measures can be 

identified, as in [9]. 

Focusing on educational buildings, specific studies have applied cluster analysis to a 

large stock for the purpose of energy benchmarking [10] or energy rating [11]. In [12], 

hourly monitored data of electricity use in several university buildings have been grouped 

in clusters, to guide possible retrofit measures. As for hourly or sub-hourly thermal load 

data, obtaining meaningful clusters is a much more difficult task, because of the scarce 

repeatability or similarity of heating, cooling and ventilation energy-demand profiles, 

which are significantly dependent on the evolution of the external climate. In addition, heat 

and cooling metering devices generally produce noisy data, due to the measurement errors 

typically introduced by small temperature differences and to the slow dynamics and lags 

especially associated to hydronic systems. 

Yet, clustering thermal load patterns would be extremely helpful in handling complex 

HVAC systems, typical of modern educational buildings. The problem of a high variability 

in energy loads caused by their dependence on the external temperature can be mitigated or 

partially solved by introducing a load-temperature correlation, the so-called energy 

signature, and then clustering the data as energy deviations from the values expected by the 

analytical application of the correlation. However, a possibly long monitoring period is 

necessary to obtain a reliable building energy signature. This latter issue, together with the 

previously mentioned metering difficulties, can be addressed by the creation of a 

thermodynamic model of the building and the subsequent computational dynamic 

simulation of its thermal and ventilation needs, as in [13]. In this way, synthetic load data 

can be generated, at a time discretization compatible with the physics and the spatial 

granularity of the adopted building model (typical time scales range between 15 minutes 

and 2 hours). 

The energy requirements predicted by the dynamic simulation of the building constitute 

the time series datasets to be processed by a suitable clustering algorithm, such as k-means 

or k-medoids. To guide the choice of the number of clusters in which daily energy profiles 

should be grouped, some performance metrics evaluating the consistency of the obtained 

classification ought to be calculated: examples are intra-cluster cohesion or compactness 

(how similar each element is to the other elements of its own cluster) and inter-cluster 

separability (how different an element is to the elements of the other clusters). The so-
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called silhouette is a common technique to be applied for this purpose [14], also providing a 

handy graphical representation. 

3 Description of the methodology 

A step-by-step methodology for obtaining healthy and energy-efficient management 

solutions of HVAC systems in educational buildings is illustrated hereafter. The 

methodology is targeted to systems that have a significant level of complexity and 

integration, otherwise, their management would be trivial, with no space for improvement. 

Conversely, in systems with storage devices, renewable energy technologies, hybrid 

generators, or different energy carriers, there is plenty of room for planning the energy-

dispatch sequence of each unit and efficiently provide the required heating, cooling, and 

ventilation services to the end users. 

Clearly, in the aftermath of the COVID-19 pandemic, HVAC systems are going to 

become more and more advanced, in response to the urgency of accurate indoor air quality 

control. This tendency is not expected to cease in the next years, whether SARS-CoV-2 

becomes endemic on the global scale or not. As a matter of fact, at least 3 new threatening 

respiratory viruses have spilled over from animals to infect humans in the last 20 years, 

namely SARS-CoV, identified in 2002, MERS-CoV, identified in 2012, and the new 

coronavirus identified in late 2019. In addition, other respiratory viruses with inter-human 

transmission such as S-OIV, responsible for swine influenza, are still endemic in many 

areas and may pose periodical threats to the public health. This outlook suggests as highly 

unlikely that ventilation rates and air quality levels will be allowed to return to pre-

pandemic values. Consequently, HVAC systems will have to be upgraded or newly 

designed to comply with these higher standards. 

The increased investment on components and controls of HVAC and energy systems 

must be paid off by a correct management, not only to guarantee a healthy indoor 

environment, but also to minimize non-renewable primary energy uses. One of the keys to 

an optimal management of the system, as it will be explained, is the ability to forecast 

energy loads and ventilation rates. 

The proposed methodology involves 4 main phases, to be performed consecutively: 

1)  building modelling and simulation; 

2)  energy-load clustering and forecasting; 

3)  energy-dispatch optimization and implementation; 

4)  post-strategy for a healthy environment. 

As a result of the application of these steps to an educational building, indoor air quality 

is kept under control and energy usage is minimized. A detailed description of the 4 phases 

will follow, together with possible case-dependent alternatives. 

3.1 Phase 1: building modelling and simulation 

The objective of this phase is to obtain a long time series (e.g., hourly data for one year 

of building use) of heating, cooling, and ventilation loads, without the need of actually 

monitoring the building energy systems. 

The first step is creating a sufficiently accurate physical model of the building, which 

correctly takes into account all the internal and external energy flows and exchanges. Once 

all information about building geometry, materials, and use are collected, the model can be 

implemented in available dynamic simulation software (there exist several software, such 

as EnergyPlus, DOE-2, and TRNSYS; each of these tools has specific features that are 

reviewed and compared in [15]), in-house tools (as the one developed in [16]), or mixed 

solutions, with user-built subroutines integrated in a commercial software (as done in [17]). 
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In any case, validation of the simulation results is needed, and it can be performed by 

comparing the actual energy billings with the calculated annual energy uses, reproducing 

the climatic conditions of the year to which the billings are referred. 

Databases of statistical climatic years are available in most building simulation software 

for the main cities around the globe, based on at least 10-year long local measurements. If a 

specific meteorological year is needed, a solution is to download the necessary data by the 

online meteorological database MERRA-2 (Modern-Era Retrospective analysis for 

Research and Applications, version 2). MERRA-2 provides weather variables generated by 

a numerical model that employs satellite observations by NASA. The database covers, on 

an hourly basis, a timespan beginning in January 1980, with a constant update up to one 

month prior the current day. The model has a spatial resolution of approximately 50 km 

[18]. 

The output of the dynamic simulation is a complete synthetic dataset of energy uses for 

the examined educational building, which can be conveniently processed in the next phase 

of data clustering. 

3.2 Phase 2: energy-load clustering and forecasting 

The objective of this phase is to process the data generated in Phase 1, in order to 

identify typical days of energy loads and perform day-ahead predictions of energy use 

profiles. The employed technique for compressing and classifying the data in groups of 

typical days is clustering, with its related algorithms, as discussed in Section 2. 

As above explained, prior to clustering thermal energy data, it is useful to find the 

building energy signature, which provides a first estimate of the thermal load as a function 

of the external temperature (or, especially for estimating the cooling need, of the sol-air 

temperature [19-20]). The load-versus-temperature correlation can be simply obtained by a 

best fit of its coefficients. Then, data clustering can be performed on the energy deviations 

from the correlated values, to produce more compact and temperature-independent clusters. 

Instead, these deviations will mainly depend on occupants’ presence and behaviour. Indeed, 

people play an important role on the energy balance of crowded buildings, due to sensible 

and latent heat produced by their bodies, internal gains associated to the use of electronic 

and lighting devices, solar radiation screening by management of shutters, curtains, or 

blinds, switch-on and switch-off schedules of energy systems, and, most important of all in 

post-pandemic times, variable air changes, based on the number of occupants. Since 

people’s presence is somehow aleatory for many building uses, dynamic simulation loads 

profiles and subsequent clusters of typical days may carry a significant degree of 

uncertainty. However, this is not the case of educational buildings, where the number of 

occupants is quite predictable, thanks to a known calendar of lessons in classes. In a new 

normal, post-pandemic situation, ventilation rates per person will be increased, emphasizing 

the energy impact of attendance level and people’s behaviour, but their prediction will also 

be much more accurate, having to comply with social-distancing rules and with a 

predetermined number of available (or even reserved) seats. As a consequence, not only the 

dynamic simulation results, but also the outcomes of the clustering procedure are going to 

be more reliable, favouring the application of the present methodology, also in view of the 

next phases. 

A proper clustering of energy-load data allows to classify the most relevant types of 

requests and accordingly plan the energy dispatch, optimizing the operation of the available 

generation and storage devices, thus minimizing the use of non-renewable primary energy 

in the identified groups of energy profiles. 

By a close observation of the obtained clusters, it is possible to tag them, referring to 

known and replicable conditions: e.g., workdays and weekends, holiday periods, lesson 
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weeks and exam weeks, and so on. This classification is going to be more accurate in 

buildings with predictable usage and with energy requirements that are highly dependent on 

people’s presence and behaviour, a situation that is typical of present and, even more, of 

future educational buildings, as previously explained. 

Associating a cluster of data to a repeatable condition means that the energy requests for 

that case can be periodically forecast, arranging the energy management of the systems, in 

advance, to comply with those nominal loads. 

3.3 Phase 3: energy-dispatch optimization and implementation 

The objective of this phase is to identify and implement, for each group of data obtained 

in Phase 2 (i.e. typical days), the best operative solutions of energy management. 

As reasoned above, occupants’ behaviour in indoor spaces has a prominent influence on 

energy needs. In addition, the use of public buildings cannot be left to chance anymore; on 

the contrary, in the future, it will be strictly planned, especially in educational buildings. 

Indeed, if compared to commercial buildings, schools and universities have the advantage 

of knowing a priori, with adequate confidence, the number of attendees in a given room and 

at a given time, based on the students enrolled to each course. 

This is undoubtedly an aspect capable of improving the quality of the performed 

clustering, thus limiting the number of predetermined conditions in which the energy-

management choices must be optimized. The acquired predicting power allows to plan, for 

the day ahead, the optimal use of the existing energy systems. Possible energy-saving 

actions in integrated HVAC systems are: 

- choice of the ventilation rate according to the estimated number of occupants [21], 

rather than running the mechanical ventilation or air conditioning system at its 

maximum flow rate, in force of an exaggeratedly precautionary approach; 

- choice of the energy generator to be switched on in a hybrid system, based on the 

expected performance of each device [22-23]; 

- choice of the storage system to be charged or discharged [24], based on the 

optimization rules calculated in relation to the forecast energy requirements and to 

the expected energy production by the available renewable energy systems [25]; 

- activation of free-cooling or free-heating options on the air system; 

- use of solar screens; 

- rational occupation of rooms and spaces, when applicable. 

Obviously, the above list is non-exhaustive, and many other energy-management and 

energy-dispatch solutions can be implemented, depending on the existing energy system. 

3.4 Phase 4: post-strategy for a healthy environment 

The objective of this phase is to always guarantee healthy conditions in the indoor 

environment, controlling in real time the operation of the HVAC system, and correcting the 

unavoidable forecasting errors. 

In spite of a high-quality clustering and day-ahead forecasting of energy needs, the 

actual energy flows will inevitably be different from the predicted ones. There are various 

reasons for this, and some of them will be mentioned as examples: 

- unexpected weather conditions, altering the thermal response of the building and the 

performance of devices such as heat pumps, photovoltaics, etc.; 

- unexpected variation of people’s presence and behaviour; 

- inaccuracies in the modelling of the building; 

- inaccuracies in the modelling of the HVAC and energy systems; 

- errors or delays in the implementation of the desired energy-dispatch sequence. 
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These discrepancies between expected and actual conditions might cause occupants’ 

thermal discomfort or, in the worst case, could lower the air quality to unacceptable levels 

from the hygienic-sanitary standpoint. This risk calls for the introduction of a so-called 

post-strategy, consisting in the adjustment of indoor air conditions by a real-time controlled 

VAV ventilation, capable of continuously guaranteeing a healthy environment for the 

occupants by means of fresh air. 

Briefly, after an optimized planning of energy dispatch, real-time adjustment of air 

changes is a practical way for achieving the necessary goal of a healthy indoor 

environment, in addition to energy efficiency. The overall methodology, as explained in 

detail, applies particularly well to educational buildings and, notably, for the needs of a 

respiratory virus post-pandemic era. As a matter of fact, social needs for health and comfort 

in living spaces (which can include not only air quality and thermal comfort, but also 

acoustic and visual comfort) are technically related aspects that can be handled by a proper 

design and management of engineering systems. 

4 Application to two university buildings and clustering results 

To show the potential of the proposed methodology, Phase 1 and Phase 2 are applied to 

real test cases, namely two classroom buildings of the School of Engineering of the 

University of Pisa. Students’ attendance is based on pre-pandemic schedules of classes, 

with implemented random uncertainties that are certainly conservative with respect to the 

new normal of access and presence control. 

The imposed meteorological conditions are the ones obtained in the last year by an in-

house weather station, located within the Engineering School perimeter, and already used 

for scientific research purposes [26]. 

The main characteristics of the two classroom buildings under analysis (Building C and 

Building F) are reported in Table 1. 

 

Table 1. Geometrical, structural, and functional characteristics of the examined buildings. 

Property Building C Building F 

Net floor area 1561 m2 2400 m2 

Gross volume 6198 m3 10080 m3 

Number of floors 5 1 

Number of classrooms 12 9 

Total number of seats 876 1424 

Surface-area-to-volume ratio 0.33 m-1 0.56 m-1 

Window-to-floor area ratio 0.25 0.15 

Type of structure 
Masonry wall with face bricks 

and reinforced concrete structure 

Brick masonry wall 

with plaster finish 

Average vertical-wall thickness 30 cm 35 cm 

Year of construction 1993 2004 
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Figures 1 and 2 show the number of occupants implemented in the dynamic simulations 

of Building C and Building F, respectively. The adopted thermodynamic model for the 

buildings is of thermal-network type. A detailed description of the validated model and 

related equations can be found in [13]. 

 

 
Fig. 1. Profile of students’ presence implemented in the annual dynamic simulation of Building C. 

 

 
Fig. 2. Profile of students’ presence implemented in the annual dynamic simulation of Building F. 

 

As a result of the annual dynamic simulation of Building C, monthly averaged daily 

profiles of heating loads can be obtained, as illustrated in Figure 3. It can be observed that 

in January and February (period of the winter-session exams) the energy needs are 

significantly higher than in the other heating months (during which classes are given). 

Analysing the weekly profiles of heating load of Building C, higher demands on Mondays 

and shorter demands on Saturdays can be reported. Daily, a morning peak can always be 

noted (see again Figure 3), at the opening hour of the building, and a second smaller peak is 

often present during the afternoon. 
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Fig. 3. Monthly averaged daily heating loads obtained by annual dynamic simulation of Building C. 

 

Figure 4 shows the energy signature of Building F, based on its annual dynamic 

simulation. As illustrated, conditions with a higher number of students are responsible for 

larger energy uses, due to higher ventilation requirements. The black line in Figure 4 

represents the nominal energy signature, based on design external and internal temperatures 

and design thermal load. 

 

 
Fig. 4. Thermal energy load versus temperature (energy signature) for Building F. 

 

The raw data of thermal energy needs of Building F have been grouped by the k-means 

algorithm into 6 clusters of daily profiles. Figure 5 clearly shows that clusters are mainly 

classified based on their mean daily temperature, hiding the dependence of energy 

requirements on people’s presence. 
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Fig. 5. Clustering of thermal energy need daily profiles and correlation to the mean external 

temperature for Building F. 

 

However, as previously explained, the thermal energy data can be appropriately 

processed, and clustering can be performed on the deviations from the energy-signature 

correlation, to obtain a lower number of clusters, which are also temperature independent. 

Figure 6 depicts the silhouette values [14] of the two clusters in which the data, processed 

as stated, are classified. A silhouette value close to one means that the point has been 

correctly classified in that cluster, while a positive or negative value close to zero means 

that the point is at the border between two clusters (a value close to negative one implies 

that the point should have been included in the neighbouring cluster). 

Cluster 1 contains most of the days during which exams or classes are given, and 

Cluster 2 includes almost all weekends and other days in which rooms are occupied by 

students mainly for studying. 

Cluster 2 has a better quality than Cluster 1, but the overall result is encouraging, 

especially considering the introduced random term of uncertainty on people’s presence 

(with reduction of attendance implemented in the model as high as 50%). As already 

remarked, this latter term is coherent with pre-pandemic routines, but the repeatability and 

predictability of future occupation schemes can certainly improve these figures. 

In conclusion, Figure 7 illustrates the results of VAV ventilation control in Building F. 

In this case, the concentration of CO2, as airborne pollutant, is used as indicator of room air 

quality, and air changes are adjusted to keep CO2 concentration below the threshold of 1000 

ppm, which is a value accepted for maintaining a healthy indoor environment in 

educational buildings [27-28]. Figure 7 also compares VAV to constant air volume (CAV) 

ventilation, implementing a nominal value of almost 4 air changes per hour during the 

building opening hours, in accordance with the Italian current standard [29]. It is evident 

that a precautionary approach to ventilation rates can be extremely energy consuming in 

this type of buildings. 
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Fig. 6. Silhouette values of the two clusters obtained for Building F, as deviations from the energy-

signature correlation. 

 

 
Fig. 7. Daily air changes per hour for Building F: CO2-based VAV versus standard-based CAV 

ventilation. 

5 Conclusions 

Among the effects of the COVID-19 pandemic, a new social perception of indoor 

environments is emerging, with immediate consequences on the design, operation, and 

maintenance of HVAC systems, to limit the risk of transmission and contagion from 

airborne respiratory viruses. Schools and universities, shut almost worldwide during the 

epidemic emergency, should be promptly reopened, to avoid a long-term impact on 

students, not only from the educational point of view, but also from the social and 

psychological standpoints [30-31]. Being the crowding index of educational buildings 

typically high, to comply with new hygienic-sanitary rules, the air changes with fresh 

(uncirculated) air are going to be increasingly demanding in terms of energy usage. This 
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issue calls for new energy-management solutions, to face the health emergency without 

disregarding the equally important climate emergency. 

In this framework, the present paper has proposed a novel methodology to manage 

integrated HVAC systems in educational buildings, to obtain a healthy environment and a 

high energy efficiency. The outlined procedure has been divided in four consecutive 

phases, which include a dynamic simulation of the building, a clustering of energy demand 

data, a day-ahead planning of energy systems operation and energy dispatch for 

minimization of non-renewable primary energy uses, and a post-strategy, to correct the 

forecasting errors, with the adjustment of ventilation rates so to keep a sufficiently high 

level of indoor air quality. 

With respect to other works employing clustering techniques on energy data of 

buildings, the proposed use of synthetic loads obtained by dynamic simulation solves issues 

associated with energy-flow monitoring. Besides, a specific attention is devoted to the new 

needs of indoor air quality arisen during the pandemic, concurrently with advanced energy-

saving strategies. 

The methodology has been presented in detail, and subsequently applied to two 

classroom buildings of the University of Pisa, showing that a good-quality of energy-load 

data clustering can be obtained, even with pre-pandemic unregulated attendance. 

Further advancements include the application of indoor air quality metrics, similar to 

the ones defined in [32], specifically tailored to educational buildings and to the updated 

requirements for limiting airborne transmission of respiratory viruses. Moreover, multi-

objective optimization techniques could be introduced for building management and 

decision making, weighting indicators of a healthy indoor environment and of an energy-

efficient HVAC system [33], even including data obtained via social interaction of students 

through tailored ICT platforms [34]. Finally, a detailed analysis conducted on a classroom 

building with post-lockdown attendance could provide an important benchmark for future 

studies. 
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