140 research outputs found

    Mind-It. Introducing Mindfulness Online to Help Students Change Perceptions and Develop Interest: A Design-Based Research Approach

    Get PDF
    This study aligns with contemporary perspectives on higher education suggesting that learning ought to be holistic, going beyond disciplinary knowledge and seeing students as whole beings, to support them in knowing themselves and integrating a more conscious society. In the attempt to contribute to this vision, this study advocates for incorporating mindfulness meditation—a contemplative practice to train the ability to be fully aware of the present moment with a nonjudgmental and curious attitude—into higher education curriculum. Adopting design-based research, I created and iteratively refined a two-week online course called Mind-IT to introduce mindfulness meditation to graduate students in the Veterinary Medicine. Due to potential barriers to engage in mindfulness meditation, the main goal of the study was to help students change their perceptions of mindfulness and develop situational interest in practicing it for their well-being. Results showed that Mind-IT helped students explore and shift their concept and experience of mindfulness, but need to offer more support for behavior change. Findings also showed that although excessive effort and time spent on some learning activities led to some frustration, Mind-IT helped students develop situational interest in mindfulness meditation

    Identification of lignocellulose-degrading enzymes using metagenomic approaches

    Get PDF
    Composting units which handle lignocellulosic residues are suitable sources of novel and promising lignocellulose-degrading enzymes such as cellulases, xylanases and amylases. These enzymes have practical application in many industries where lignocellulose is converted into several added-value bioproducts. However, the effective conversion of lignocellulose by a sustainable process is currently incomplete. Therefore, there is a need to find novel and robust catalysts to overcome this fact. Function- and sequence-based metagenomic approaches were used to identify novel lignocellulose-degrading enzymes with interesting industrial applications.info:eu-repo/semantics/publishedVersio

    Immunopathology and Trypanosoma congolense parasite sequestration cause acute cerebral trypanosomiasis

    Get PDF
    © 2022, Silva Pereira, De Niz et al. This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.Trypanosoma congolense causes a syndrome of variable severity in animals in Africa. Cerebral trypanosomiasis is a severe form, but the mechanism underlying this severity remains unknown. We developed a mouse model of acute cerebral trypanosomiasis and characterized the cellular, behavioral, and physiological consequences of this infection. We show large parasite sequestration in the brain vasculature for long periods of time (up to 8 hr) and extensive neuropathology that associate with ICAM1-mediated recruitment and accumulation of T cells in the brain parenchyma. Antibody-mediated ICAM1 blocking and lymphocyte absence reduce parasite sequestration in the brain and prevent the onset of cerebral trypanosomiasis. Here, we establish a mouse model of acute cerebral trypanosomiasis and we propose a mechanism whereby parasite sequestration, host ICAM1, and CD4+ T cells play a pivotal role.This work was supported by European Union’s Horizon 2020 research and innovation program through a Marie Skłodowska-Curie Individual Standard European Fellowship to S.S.P., under grant agreement no. 839960, and from the European Research Council (ERC) (FatTryp, 771714) to L.M.F. M.D.N. was funded by Human Frontiers LT000047/2019 L (HFSP) and EMBO (ALTF 1048–2016). L.M.F., K.S., and C.A.F. are Investigators CEEC of the Fundação para a Ciência e a Tecnologia (CEECIND/03322/2018, CEECIND/00697/2018, CEECIND/04251/2017, respectively). C.A.F. was supported by a European Research Council starting grant (679368), the Fondation Leducq (17CVD03), and the Fundação para a Ciência e a Tecnologia (grants IF/00412/2012, EXPL/BEX- BCM/2258/2013, PRECISE-LISBOA-01–0145-FEDER-016394, PTDC/MED-PAT/31639/2017, PTDC/BIA-CEL/32180/2017).info:eu-repo/semantics/publishedVersio

    Chitosan-based hierarchical scaffolds crosslinked with genipin

    Get PDF
    Osteochondral defects present significant challenges for effective tissue regeneration due to the complex composition of bone and cartilage. To address this challenge, this study presents the fabrication of hierarchical scaffolds combining chitosan/β-tricalcium phosphate (β-TCP) to simulate a bone-like layer, interconnected with a silk fibroin layer to mimic cartilage, thus replicating the cartilage-like layer to mimic the native osteochondral tissue architecture. The scaffolds were produced by freeze-drying and then crosslinking with genipin. They have a crosslinking degree of up to 24%, which promotes a structural rearrangement and improved connection between the different layers. Micro-CT analysis demonstrated that the structures have distinct porosity values on their top layer (up to 84%), interface (up to 65%), and bottom layer (up to 77%) and are dependent on the concentration of β-tricalcium phosphate used. Both layers were confirmed to be clearly defined by the distribution of the components throughout the constructs, showing adequate mechanical properties for biomedical use. The scaffolds exhibited lower weight loss (up to 7%, 15 days) after enzymatic degradation due to the combined effects of genipin crosslinking and β-TCP incorporation. In vitro studies showed that the constructs supported ATDC5 chondrocyte-like cells and MC3T3 osteoblast-like cells in duo culture conditions, providing a suitable environment for cell adhesion and proliferation for up to 14 days. Overall, the physicochemical properties and biological results of the developed chitosan/β-tricalcium phosphate/silk fibroin bilayered scaffolds suggest that they may be potential candidates for osteochondral tissue strategies.This study was partially financed by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001 and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), PVE 407035/2013-3. This work is also financially supported by Portuguese FCT (PD/BD/135247/2017, SFRH/BPD/93697/2013, DL 57/2016/CP1377/CT0054 (https://doi.org/10.54499/DL57/2016/CP1377/CT0054), CEECINST/00018/2021), PhD programme in Advanced Therapies for Health (PATH) (PD/00169/2013), FCT R&D&I projects with references PTDC/BII-BIO/31570/2017, PTDC/CTM-CTM//29813/2017, and PTDC/CTM-BIO/4706/2014- (POCI-01-0145-FEDER-016716). The authors would like to thank the contributions to this research from the project “TERM RES Hub—Scientific Infrastructure for Tissue Engineering and Regenerative Medicine”, reference PINFRA/22190/2016 (Norte-01-0145-FEDER-022190), funded by the Portuguese National Science Foundation (FCT) in cooperation with the Northern Portugal Regional Coordination and Development Commission (CCDR-N), for providing relevant lab facilities, state-of-the-art equipment, and highly qualified human resources

    Covalent organic frameworks as catalyst support: A case study of thermal, hydrothermal, and mechanical pressure stability of β-ketoenamine-linked TpBD-Me2

    Get PDF
    Covalent organic frameworks (COFs) are crystalline, ordered networks, that, due to their high surface areas and the opportunity for periodic placement of catalytically active sites, are interesting materials for catalysis. Despite the great interest in the use of COFs for this application, there is currently a lack of fundamental understanding on how catalytically relevant conditions affect the integrity of the materials. To gain insight into the stability of COFs as catalyst supports, we herein subjected a β-ketoenamine-linked COF to thermal treatment at high temperatures, to autogenous pressure in water at different temperatures, and to mechanical pressure during pelletizing, after which the materials were thoroughly characterized to gain insight into the structural changes occurring during these catalytically relevant treatments. The COF was largely stable under all hydrothermal conditions studied, highlighting the applicability of β-ketoenamine-linked COFs under aqueous and vapor conditions. On the other hand, thermal and pressure treatments led to a rapid decline in the surface area already at the lowest temperatures and pressures studied. Theoretical calculations indicated this loss to stem from interlayer rearrangement or buckling of the COF layers induced by the applied conditions. This study demonstrates the suitability of β-ketoenamine-linked COFs for use under hydrothermal conditions, and sheds light on the degradation pathways under thermal and pressure treatments, opening the path to the design of COFs with increased stability under such conditions.Fundação para a Ciência e a Tecnologia | Ref. UTA-EXPL/NPN/0055/2019Fundação para a Ciência e a Tecnologia | Ref. PTDC/QUI-OUT/2095/2021Fundação para a Ciência e a Tecnologia | Ref. PTDC/EQU-EQU/1707/2020Agencia Estatal de Investigación | Ref. RYC2020-030414-IUniversidade de Vigo/CISU

    Landscape determinants of European roller foraging habitat: implications for the definition of agri-environmental measures for species conservation

    Get PDF
    Across much of Europe, farmland birds are declining more than those in other habitats. From a conservation perspective, identifying the primary preferred habitats could help improve the foraging conditions of target species and, consequently, enhance their breeding success and survival. Here, we investigated the ranging behaviour and foraging habitat selection of the European roller (Coracias garrulus) during the breeding season in an agricultural landscape of South Iberia. The occurrence of foraging rollers was predicted to gradually increase with decreasing distance from the nest and increasing availability of perches, such as fences and electric wires. Traditional olive groves and stubble fields were positively and negatively associated with the occurrence of rollers, respectively. Additionally, analysis of hunting strikes showed that rollers highly prefer foraging in fallows rather than cereal or stubble fields. Prey surveys revealed that fallows had the highest abundance of grasshoppers, rollers’ preferred prey during chick-rearing. Pair home-ranges, obtained from 95% fixed Kernel estimators averaged 70.9 ha (range = 34–118 ha) and most foraging trips (80%) occurred in the close vicinity of the nest (<500 m). Number of chicks fledged was not affected by mean foraging distances travelled during the chick-rearing period. Overall, our results suggest that traditional extensive practices of cereal cultivation, with large areas of low-intensity grazed fallows, represent a high-quality foraging habitat for rollers and should be promoted through agri-environmental schemes within at least 1-km radius from the nest. These recommendations are targeted at the roller, but have been shown to apply broadly to several other steppe-bird species

    Autoantibody screening in Guillain-Barré syndrome

    Get PDF
    Background: Guillain?Barré syndrome (GBS) is an acute inflammatory neuropathy with a heterogeneous presentation. Although some evidences support the role of autoantibodies in its pathogenesis, the target antigens remain unknown in a substantial proportion of GBS patients. The objective of this study is to screen for autoantibodies targeting peripheral nerve components in Guillain-Barré syndrome. Methods: Autoantibody screening was performed in serum samples from all GBS patients included in the International GBS Outcome study by 11 different Spanish centres. The screening included testing for anti-ganglioside antibodies, anti-nodo/paranodal antibodies, immunocytochemistry on neuroblastoma-derived human motor neurons and murine dorsal root ganglia (DRG) neurons, and immunohistochemistry on monkey peripheral nerve sections. We analysed the staining patterns of patients and controls. The prognostic value of anti-ganglioside antibodies was also analysed. Results: None of the GBS patients (n = 100) reacted against the nodo/paranodal proteins tested, and 61 (61%) were positive for, at least, one anti-ganglioside antibody. GBS sera reacted strongly against DRG neurons more frequently than controls both with IgG (6% vs 0%; p = 0.03) and IgM (11% vs 2.2%; p = 0.02) immunodetection. No differences were observed in the proportion of patients reacting against neuroblastoma-derived human motor neurons. Reactivity against monkey nerve tissue was frequently detected both in patients and controls, but specific patterns were only detected in GBS patients: IgG from 13 (13%) patients reacted strongly against Schwann cells. Finally, we confirmed that IgG anti-GM1 antibodies are associated with poorer outcomes independently of other known prognostic factor

    Autoantibody screening in Guillain-Barré syndrome

    Get PDF
    Background: Guillain-Barré syndrome (GBS) is an acute inflammatory neuropathy with a heterogeneous presentation. Although some evidences support the role of autoantibodies in its pathogenesis, the target antigens remain unknown in a substantial proportion of GBS patients. The objective of this study is to screen for autoantibodies targeting peripheral nerve components in Guillain-Barré syndrome. Methods: Autoantibody screening was performed in serum samples from all GBS patients included in the International GBS Outcome study by 11 different Spanish centres. The screening included testing for anti-ganglioside antibodies, anti-nodo/paranodal antibodies, immunocytochemistry on neuroblastoma-derived human motor neurons and murine dorsal root ganglia (DRG) neurons, and immunohistochemistry on monkey peripheral nerve sections. We analysed the staining patterns of patients and controls. The prognostic value of anti-ganglioside antibodies was also analysed. Results: None of the GBS patients (n = 100) reacted against the nodo/paranodal proteins tested, and 61 (61%) were positive for, at least, one anti-ganglioside antibody. GBS sera reacted strongly against DRG neurons more frequently than controls both with IgG (6% vs 0%; p = 0.03) and IgM (11% vs 2.2%; p = 0.02) immunodetection. No differences were observed in the proportion of patients reacting against neuroblastoma-derived human motor neurons. Reactivity against monkey nerve tissue was frequently detected both in patients and controls, but specific patterns were only detected in GBS patients: IgG from 13 (13%) patients reacted strongly against Schwann cells. Finally, we confirmed that IgG anti-GM1 antibodies are associated with poorer outcomes independently of other known prognostic factors. Conclusion: Our study confirms that (1) GBS patients display a heterogeneous repertoire of autoantibodies targeting nerve cells and structures; (2) gangliosides are the most frequent antigens in GBS patients and have a prognostic value; (3) further antigen-discovery experiments may elucidate other potential antigens in GBS

    Distinct Regulatory Functions of Calpain 1 and 2 during Neural Stem Cell Self-Renewal and Differentiation

    Get PDF
    Calpains are calcium regulated cysteine proteases that have been described in a wide range of cellular processes, including apoptosis, migration and cell cycle regulation. In addition, calpains have been implicated in differentiation, but their impact on neural differentiation requires further investigation. Here, we addressed the role of calpain 1 and calpain 2 in neural stem cell (NSC) self-renewal and differentiation. We found that calpain inhibition using either the chemical inhibitor calpeptin or the endogenous calpain inhibitor calpastatin favored differentiation of NSCs. This effect was associated with significant changes in cell cycle-related proteins and may be regulated by calcium. Interestingly, calpain 1 and calpain 2 were found to play distinct roles in NSC fate decision. Calpain 1 expression levels were higher in self-renewing NSC and decreased with differentiation, while calpain 2 increased throughout differentiation. In addition, calpain 1 silencing resulted in increased levels of both neuronal and glial markers, β-III Tubulin and glial fibrillary acidic protein (GFAP). Calpain 2 silencing elicited decreased levels of GFAP. These results support a role for calpain 1 in repressing differentiation, thus maintaining a proliferative NSC pool, and suggest that calpain 2 is involved in glial differentiation
    corecore