22,009 research outputs found
Magnetic properties of the double perovskites LaPbMSbO6 (M = Mn, Co and Ni)
New double perovskites LaPbMSbO6, where M2+ = Mn2+, Co2+, and Ni2+, were
synthesized as polycrystals by an aqueous synthetic route at temperatures below
1000 oC. All samples are monoclinic, space group P21/n, as obtained from
Rietveld analysis of X-ray powder diffraction patterns. The distribution of M2+
and Sb5+ among the two octahedral sites have 3% of disorder for M2+ = Ni2+,
whereas for M2+ = Mn2+ and Co2+ less disorder is found. The three samples have
an antiferromagnetic transition, due to the antiferromagnetic coupling between
M2+ through super-superexchange paths M2+ - O2- - Sb5+ - O2- - M2+. Transition
temperatures are low: 8, 10 and 17 K for Mn2+, Co2+, and Ni2+ respectively, as
a consequence of the relatively long distances between the magnetic ions M2+.
Besides, for LaPbMnSbO6 a small transition at 45 K was found, with
ferrimagnetic characteristics, possibly as a consequence of a small disorder
between Mn2+ and Sb5+. This disorder would give additional and shorter
interaction paths: superexchange Mn2+ - O2- - Mn2+.Comment: 4 pages, 4 figures included. Manuscript submitted to IEEE
Transactions on Magnetics, proceedings of the LAW3M 2013 conferenc
Positive solutions of nonlinear fourth-order boundary-value problems with local and non-local boundary conditions
We establish new existence results for multiple positive solutions of fourth-order nonlinear equations which model deflections of an elastic beam. We consider the widely studied boundary conditions corresponding to clamped and hinged ends and many non-local boundary conditions, with a unified approach. Our method is to show that each boundary-value problem can be written as the same type of perturbed integral equation, in the space , involving a linear functional but, although we seek positive solutions, the functional is not assumed to be positive for all positive . The results are new even for the classic boundary conditions of clamped or hinged ends when , because we obtain sharp results for the existence of one positive solution; for multiple solutions we seek optimal values of some of the constants that occur in the theory, which allows us to impose weaker assumptions on the nonlinear term than in previous works. Our non-local boundary conditions contain multi-point problems as special cases and, for the first time in fourth-order problems, we allow coefficients of both signs
Tailoring the ground state of the ferrimagnet La2Ni(Ni1/3Sb2/3)O6
We report on the magnetic and structural properties of La2Ni(Ni1/3Sb2/3)O6 in
polycrystal, single crystal and thin film samples. We found that this material
is a ferrimagnet (Tc ~ 100 K) which possesses a very distinctive and uncommon
feature in its virgin curve of the hysteresis loops. We observe that bellow 20
K it lies outside the hysteresis cycle, and this feature was found to be an
indication of a microscopically irreversible process possibly involving the
interplay of competing antiferromagnetic interactions that hinder the initial
movement of domain walls. This initial magnetic state is overcome by applying a
temperature dependent characteristic field. Above this field, an isothermal
magnetic demagnetization of the samples yield a ground state different from the
initial thermally demagnetized one.Comment: 21 pages, 8 figures, submitted to JMM
Positronium signature in organic liquid scintillators for neutrino experiments
Electron anti-neutrinos are commonly detected in liquid scintillator
experiments via inverse beta decay, by looking at the coincidence between the
reaction products, neutron and positron. Prior to positron annihilation, an
electron-positron pair may form an orthopositronium (o-Ps) state, with a mean
life of a few ns. Even if the o-Ps decay is speeded up by spin flip or pick off
effects, it may introduce distortions in the photon emission time distribution,
crucial for position reconstruction and pulse shape discrimination algorithms
in anti-neutrino experiments. Reversing the problem, the o-Ps induced time
distortion represents a new signature for tagging anti-neutrinos in liquid
scintillator.
In this paper, we report the results of measurements of the o-Ps formation
probability and lifetime, for the most used solvents for organic liquid
scintillators in neutrino physics (pseudocumene, linear alkyl benzene,
phenylxylylethane, and dodecane). We characterize also a mixture of
pseudocumene +1.5 g/l of 2,5-diphenyloxazole, a fluor acting as wavelength
shifter.
In the second part of the paper, we demonstrate that the o-Ps induced
distortion of the scintillation photon emission time distributions represent an
optimal signature for tagging positrons on an event by event basis, potentially
enhancing the anti-neutrino detection.Comment: 6 pages, 9 figure
Fractal Fidelity as a signature of Quantum Chaos
We analyze the fidelity of a quantum simulation and we show that it displays
fractal fluctuations iff the simulated dynamics is chaotic. This analysis
allows us to investigate a given simulated dynamics without any prior
knowledge. In the case of integrable dynamics, the appearance of fidelity
fractal fluctuations is a signal of a highly corrupted simulation. We
conjecture that fidelity fractal fluctuations are a signature of the appearance
of quantum chaos. Our analysis can be realized already by a few qubit quantum
processor.Comment: 5 pages, 5 figure
A new anti-neutrino detection technique based on positronium tagging with plastic scintillators
The main signature for anti-neutrino detection in reactor and geo-neutrino
experiments based on scintillators is provided by the space-time coincidence of
positron and neutron produced in the Inverse Beta Decay reaction. Such a
signature strongly suppresses backgrounds and allows for measurements performed
underground with a relatively high signal-to-background ratio. In an
aboveground environment, however, the twofold coincidence technique is not
sufficient to efficiently reject the high background rate induced by cosmogenic
events. Enhancing the positron-neutron twofold coincidence efficiency has the
potential to pave the way future aboveground detectors for reactor monitoring.
We propose a new detection scheme based on a threefold coincidence, between the
positron ionization, the ortho-positronium (o-Ps) decay, and the neutron
capture, in a sandwich detector with alternated layers of plastic scintillator
and aerogel powder. We present the results of a set of dedicated measurements
on the achievable light yield and on the o-Ps formation and lifetime. The
efficiencies for signal detection and background rejection of a preliminary
detector design are also discussed.Comment: 18 pages, 10 figure
An SU(5)Z_{13} Grand Unification Model
We propose an SU(5) grand unified model with an invisible axion and the
unification of the three coupling constants which is in agreement with the
values, at , of , , and . A discrete,
anomalous, symmetry implies that the Peccei-Quinn symmetry is an
automatic symmetry of the classical Lagrangian protecting, at the same time,
the invisible axion against possible semi-classical gravity effects. Although
the unification scale is of the order of the Peccei-Quinn scale the proton is
stabilized by the fact that in this model the standard model fields form the
SU(5) multiplets completed by new exotic fields and, also, because it is
protected by the symmetry.Comment: 14 pages, more typos correcte
Submillimeter H2O masers in water-fountain nebulae
We report the first detection of submillimeter water maser emission toward
water-fountain nebulae, which are post-AGB stars that exhibit high-velocity
water masers. Using APEX we found emission in the ortho-H2O (10_29-9_36)
transition at 321.226 GHz toward three sources: IRAS 15445-5449, IRAS
18043-2116 and IRAS 18286-0959. Similarly to the 22 GHz masers, the
submillimeter water masers are expanding with a velocity larger than that of
the OH masers, suggesting that these masers also originate in fast bipolar
outflows. In IRAS 18043-2116 and IRAS 18286-0959, which figure among the
sources with the fastest water masers, the velocity range of the 321 GHz masers
coincides with that of the 22 GHz masers, indicating that they likely coexist.
Towards IRAS 15445-5449 the submillimeter masers appear in a different velocity
range, indicating that they are tracing different regions. The intensity of the
submillimeter masers is comparable to that of the 22 GHz masers, implying that
the kinetic temperature of the region where the masers originate should be Tk >
1000 K. We propose that the passage of two shocks through the same gas can
create the conditions necessary to explain the presence of strong high-velocity
321 GHz masers coexisting with the 22 GHz masers in the same region.Comment: 4 pages, 1 figure. Accepted for publication in A&A Letter
- âŠ