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We establish new existence results for multiple positive solutions of fourth-order
nonlinear equations which model deflections of an elastic beam. We consider the
widely studied boundary conditions corresponding to clamped and hinged ends and
many non-local boundary conditions, with a unified approach. Our method is to show
that each boundary-value problem can be written as the same type of perturbed
integral equation, in the space C[0, 1], involving a linear functional α[u] but, although
we seek positive solutions, the functional is not assumed to be positive for all
positive u. The results are new even for the classic boundary conditions of clamped
or hinged ends when α[u] = 0, because we obtain sharp results for the existence of
one positive solution; for multiple solutions we seek optimal values of some of the
constants that occur in the theory, which allows us to impose weaker assumptions on
the nonlinear term than in previous works. Our non-local boundary conditions
contain multi-point problems as special cases and, for the first time in fourth-order
problems, we allow coefficients of both signs.

1. Introduction

We shall study the existence of multiple positive solutions of the fourth-order dif-
ferential equation

u(4)(t) = g(t)f(t, u(t)) for almost every t ∈ (0, 1), (1.1)

subject to various boundary conditions (BCs); g and f are non-negative and g is
allowed to have singularities. Equation (1.1) models the stationary states of the
deflection of an elastic beam. The standard BCs that are often imposed are

u(0) = 0, u(1) = 0, u′(0) = 0, u′(1) = 0, (1.2)
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which correspond to both ends being clamped, and

u(0) = 0, u(1) = 0, u′′(0) = 0, u′′(1) = 0, (1.3)

which correspond to hinged ends, when there is no bending moment at the ends,
also termed ‘simply supported’ (it also models a rotating shaft).

The existence of a solution for equation (1.1), or its generalizations, under the
above conditions and other local linear BCs which cover different physical situations,
has been considered extensively in the literature (see, for example, [2, 7, 8, 11, 16,
20–22,25,27,30–32]).

Moreover, there are papers dealing with general BCs that include some of the
usual linear ones. For example, nonlinear BCs are considered in [5,6,33]. Although
each of these uses the technique involving upper and lower solutions, their results
are not usually comparable because each considers a perturbation of a different
linear problem.

Here, we shall discuss a general approach based on fixed-point index theory to
deal with the existence of positive solutions for boundary-value problems (BVPs)
with each of the BCs (1.2), (1.3), and also some non-local BCs which include these
as special cases. In particular, we deal with each of the following non-local BCs:

u(0) = 0, u(1) = α[u], u′(0) = 0, u′(1) = 0, (1.4)
u(0) = 0, u(1) = 0, u′(0) = 0, u′(1) + α[u] = 0, (1.5)
u(0) = 0, u(1) = α[u], u′′(0) = 0, u′′(1) = 0, (1.6)
u(0) = 0, u(1) = 0, u′′(0) = 0, u′′(1) + α[u] = 0. (1.7)

In these equations α[u] denotes a linear functional on C[0, 1] given by

α[u] =
∫ 1

0
u(s) dA(s) (1.8)

involving a Stieltjes integral. This includes the well-known multi-point BCs, where
α[u] =

∑m
i=1 αiu(ηi), ηi ∈ (0, 1). It is clear that, for each of the BCs (1.4)–(1.6), for

a positive solution u to exist we must have α[u] � 0. However, in contrast to other
work, we do not suppose that α[u] � 0 for all u � 0 but we allow a signed measure,
that is, A is a function of bounded variation. Thus, we consider rather general
BCs; these include multi-point BCs as special cases and we do not insist that all
coefficients in these are positive, which increases the versatility of the model.

The BC (1.4) can be thought of as having the end at 0 clamped, and having
some mechanism at end 1 that controls the displacement according to feedback
from devices measuring the displacements along parts of the beam. Similarly, for
the BC (1.5), depending on the feedback, the angular attitude of the beam at end 1
is adjusted while maintaining a fixed displacement. The BC (1.7) corresponds to
controlling the bending moment at 1 according to the feedback about the displace-
ments along the beam.

We refer the reader to [13, 23] for situations where modelling the deflection of a
beam with point loadings leads to multi-point boundary-value problems. It is also
interesting to note that such types of condition arise naturally when constructing
Floquet theory of the beam equation (see [28]).
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Webb and Infante [35] gave a general method which was applied to second-order
equations and showed that non-local BCs can be studied by a common method. The
advantages of this method are: its simplicity; multi-point problems are included as
special cases; the Green’s function does not need to be calculated for each individual
BC; and its ability to allow a signed measure, corresponding to allowing terms of
both signs to occur in multi-point BCs, subject to some overall positivity condition.
We show that the fourth-order problems also fit this common framework; thus, we
can, and do, study many BVPs in a unified manner rather than on an ad hoc,
case-by-case basis.

Some recent papers (see, for example, [9,24,37]) have established existence results
for the beam equation under some multi-point BCs different from ours, but they
do not use a general theory.

The method in [35] is to find solutions of each non-local BVP as solutions of a
perturbed Hammerstein integral equation of the type

u(t) = γ(t)α[u] +
∫ 1

0
k(t, s)g(s)f(s, u(s)) ds, (1.9)

where k(t, s) is the Green’s function for the unperturbed problem (see § 3.1, below,
for further details on how this is done).

With this common framework available, we are able to give results for perturbed
problems by verifying that the well-known Green’s function for each of the BCs
(1.2), (1.3) satisfies the required conditions. We remark that other BCs can be
considered equally easily once it is shown that they can be written in the form
of (1.9) and satisfy the relevant hypotheses.

Our method establishes the existence of arbitrary numbers of positive solutions
under suitable conditions on the nonlinear term f (see theorem 3.1 and figure 1);
some of these conditions involve the ‘principal eigenvalue’ of the related linear
differential equation.

In the local BC situation, for both the clamped and hinged ends cases, Rynne [29]
discusses solutions of both signs and proves the existence of infinitely many solutions
having a large number of nodes. Korman [15] uses techniques of bifurcation theory
to give exact multiplicity of positive solutions for the fourth-order clamped ends
problem when f is convex, and also gives a uniqueness result. Our methods are
different and we obtain different types of results which complement theirs.

Our results have four main features. Firstly, we improve on previous results,
even in the unperturbed case. By making a more careful analysis of some of the
constants that occur in the theory we are able to obtain values that are optimal
for this method. We improve, for example, the recent results of [16, 38] for the
clamped ends case, (1.2), and [2, 39] for the hinged ends case, (1.3). Secondly, we
obtain sharp results for the existence of one positive solution. Thirdly, we obtain
new results on the existence of arbitrary numbers of positive solutions for many
non-local BCs in one general method, and under weak conditions. Fourthly, for
the first time in fourth-order problems, we provide a systematic study of multi-
point problems which allows coefficients of both signs rather than having all these
coefficients positive. We have placed emphasis on giving results where constants
that occur in the hypotheses can be computed.
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2. Positive solutions of perturbed integral equations

A standard approach to studying positive solutions of a BVP such as (1.1) with
some BC is to find the corresponding Green’s function k and seek solutions as fixed
points of the integral operator

Su(t) :=
∫ 1

0
k(t, s)g(s)f(s, u(s)) ds

in the cone P = {u ∈ C[0, 1] : u � 0} of non-negative functions in the space C[0, 1]
of continuous functions endowed with the usual supremum norm.

To obtain multiple positive solutions it has proved to be convenient to work in a
smaller cone than P , namely, for some subinterval [a, b] of [0, 1],

K0 :=
{

u ∈ P : min
t∈[a,b]

u(t) � c‖u‖
}

,

where c > 0 is a constant. The cone K0 is of a well-known type, apparently first
used by Krasnosel’skĭı, and may be found in [17, § 45.4], and by Guo (see, for
example, [10]), and has been used by many other authors in the study of multiple
solutions of BVPs.

Lan and Webb [19] gave a framework which fits the use of this cone rather well.
However, for multi-point BCs in particular, the form of the Green’s function can
become very complicated, which leads to over-strong hypotheses being imposed
on the coefficients because of the technical calculations. Webb and Infante [35]
have refined this framework and shown that non-local BCs can be studied, in a
unified way, without calculating a complicated Green’s function, via a perturbed
Hammerstein integral equation of the type

u(t) = γ(t)α[u] +
∫ 1

0
k(t, s)g(s)f(s, u(s)) ds := γ(t)α[u] + Fu(t) := Tu(t), (2.1)

where α[u] is as in (1.8) and k is the simpler Green’s function of an unperturbed
problem.

The rather weak conditions imposed on k, f and g in (2.1) are as follows.

(C1) The kernel k is measurable, non-negative and, for every τ ∈ [0, 1], satisfies

lim
t→τ

|k(t, s) − k(τ, s)| = 0 for almost every s ∈ [0, 1].

(C2) There exist a subinterval [a, b] ⊆ [0, 1], a measurable function Φ and a constant
c1 ∈ (0, 1] such that

k(t, s) � Φ(s) for t ∈ [0, 1] and almost every s ∈ [0, 1],
k(t, s) � c1Φ(s) for t ∈ [a, b] and almost every s ∈ [0, 1].

(C3) gΦ ∈ L1[0, 1], g � 0 almost everywhere, and∫ b

a

Φ(s)g(s) ds > 0.



Positive solutions of non-local BVPs 431

(C4) A is of bounded variation and

K(s) :=
∫ 1

0
k(t, s) dA(t) � 0 for almost every s.

(C5) γ ∈ C[0, 1], γ(t) � 0, 0 � α[γ] < 1, and there exists c2 ∈ (0, 1] such that

γ(t) � c2‖γ‖ for t ∈ [a, b].

(C6) f : [0, 1]× [0,∞) → [0,∞) satisfies Carathéodory conditions, that is, f(·, u) is
measurable for each fixed u ∈ [0,∞) and f(t, ·) is continuous for almost every
t ∈ [0, 1] and, for each r > 0, there exists φr ∈ L∞[0, 1] such that

0 � f(t, u) � φr(t) for all u ∈ [0, r] and almost all t ∈ [0, 1].

It is often convenient to establish the following type of inequality, which proves
(C2) when c1(t) � c1 > 0 on [a, b]:

(C ′
2) c1(t)Φ(s) � k(t, s) � Φ(s), for 0 � t, s � 1.

We will do this in this paper.
The condition (C3) means that we study weakly singular problems; g may have

singularities at arbitrary points of [0, 1]. The kernel k is often continuous and
k(t, s) > 0 for t ∈ (0, 1) and s ∈ [0, 1], in which case (C2) is satisfied for any
[a, b] ⊂ (0, 1). However, careful selection of [a, b] allows the use of weaker hypothe-
ses on f in the fixed-point index calculations. The function Φ plays only a subsidiary
role, but the value of c1 enters explicitly into some of these calculations. Choosing
c1 as large as possible leads to a weaker condition to be satisfied by f in theo-
rem 2.2, below. Note that the condition K(s) � 0 in (C4) is automatically satisfied
for positive measures. Examples of sign-changing measures satisfying this condition
in second-order problems are given explicitly in [35]. Example 3.5, below, shows
how this condition can be satisfied in a fourth-order problem with a multi-point
BVP having coefficients of both signs.

We use the classical theory of fixed-point index for compact maps (see, for exam-
ple, [1] or [10] for details). Let q : C[0, 1] → R denote the continuous function

q(u) = min{u(t) : t ∈ [a, b]}. (2.2)

The above hypotheses allow us to work in the cone

K = {u ∈ P, q(u) � c‖u‖, α[u] � 0}, where c = min{c1, c2}, (2.3)

with c1 as in (C2) and c2 as in (C5). The cone defined in (2.3) was introduced in [35]
to weaken the standard requirement that α[u] � 0 for every u � 0 so that certain
sign-changing measures can be dealt with. Note that K = K0 ∩{u ∈ P : α[u] � 0},
where K0 is as mentioned above.

For ρ > 0 we define the following bounded open subsets of K:

Kρ := {u ∈ K : ‖u‖ < ρ}, Vρ := {u ∈ K : q(u) < ρ}.

The set Vρ was so named in [12] and is equal to the set called Ωρ/c in [18].
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The theory of fixed-point index can be used, in an essentially routine way, to show
the existence of arbitrary numbers of positive solutions under suitable conditions
on f , once it is shown that the index is 1 on certain open subsets and 0 on certain
others.

We give two types of index result: one exploits the behaviour of f(t, u)/u near 0
and ∞ and gives some sharp results; the other concerns the behaviour on bounded
intervals.

For f : [0, 1] × R → R and u ∈ R we define the following notation:

f̄(u) = sup
0�t�1

f(t, u), f(u) = inf
0�t�1

f(t, u),

f0 = lim sup
u→0+

f̄(u)/u, f0 = lim inf
u→0+

f(u)/u,

f∞ = lim sup
u→∞

f̄(u)/u, f∞ = lim inf
u→∞

f(u)/u,

f0,ρ = sup
0�u�ρ,0�t�1

f(t, u)/ρ, fρ,ρ/c = inf
ρ�u�ρ/c,a�t�b

f(t, u)/ρ.

The following result uses the notion of the principal eigenvalue of an associated
linear operator. Let µ1 be the smallest positive number such that there exists ϕ ∈
P \ {0} satisfying

ϕ = γ(t)α[ϕ] + µ1LF ϕ, (2.4)

where

LF u =
∫ 1

0
k(t, s)g(s)u(s) ds.

In [35] it is shown that 1/µ1 is the radius of the spectrum of a compact linear
operator which has an eigenfunction ϕ ∈ P \ {0} under our hypotheses; µ1 is often
called the principal eigenvalue of the corresponding linear differential equation. In
general, µ1 is to be calculated from the integral equation (2.4) by some numerical
method, but in some cases can be found from the differential equation.

The following index results from [35] were deduced from some results of [36].

Theorem 2.1.

(i) If 0 � f0 < µ1, then there exists ρ0 > 0 such that

iK(T, Kρ) = 1 for each ρ ∈ (0, ρ0].

(ii) If 0 � f∞ < µ1, then there exists R0 such that

iK(T, KR) = 1 for each R > R0.

(iii) If µ1 < f0 � ∞, then there exists ρ0 > 0 such that, for each ρ ∈ (0, ρ0], if
u �= Tu for u ∈ ∂Kρ, then

iK(T, Kρ) = 0.

(iv) If (C2) holds for an arbitrary [a, b] ⊂ (0, 1) and µ1 < f∞ � ∞, then there
exists R1 such that, for each R � R1, if u �= Tu for u ∈ ∂KR, then

iK(T, KR) = 0.
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In [35, 36] part (iv) is only proved under an extra hypothesis, namely that the
principal eigenvalue is the unique eigenvalue with a positive eigenvector. However,
this condition can be removed because a result of Nussbaum (see [26, lemma 2,
p. 226]) proves that [36, theorem 3.7] holds in every case. It has also been shown
in [34] that the principal eigenvalue is in fact the unique eigenvalue with a positive
eigenvector for the type of non-local BVPs that we are studying.

We now quote the result from [35] which takes account of the behaviour of the
nonlinearity on bounded intervals. A stronger result is also given in [35]. We state
only the weaker result here, which allows easy computations of all the constants
involved in specific cases, as we show later in the paper with explicit examples.
When the perturbation is 0 we recover a version of a result of [18]. We employ the
following constants:

1
m

:= sup
t∈[0,1]

∫ 1

0
k(t, s)g(s) ds,

1
M(a, b)

:= inf
t∈[a,b]

∫ b

a

k(t, s)g(s) ds. (2.5)

Theorem 2.2 (Webb and Infante [35]).

(i) Suppose there exists ρ > 0 such that

f0,ρ

(
‖γ‖

1 − α[γ]

∫ 1

0
K(s)g(s) ds +

1
m

)
< 1. (2.6)

Then the fixed-point index, iK(T, Kρ), is equal to 1.

(ii) For ρ > 0, the fixed-point index iK(T, Vρ) is equal to 0 if

fρ,ρ/c

(
c2‖γ‖

1 − α[γ]

∫ b

a

K(s)g(s) ds +
1

M(a, b)

)
> 1. (2.7)

Theorem 2.1 leads to the following sharp result: a positive solution exists if the
nonlinearity ‘crosses’ the principal eigenvalue.

Theorem 2.3. Assume that (C1)–(C6) hold and that one of the following condi-
tions holds:

(H1) 0 � f0 < µ1 and µ1 < f∞ � ∞;

(H2) 0 � f∞ < µ1 and µ1 < f0 � ∞.

Then (2.1) has a positive solution u ∈ K, r � ‖u‖ � R for some 0 < r < R.

The proof is obtained by applying theorem 2.1 on Kr with r sufficiently small and
on KR with R sufficiently large and using the additivity property of the fixed-point
index.

Theorem 2.2 and a standard application of fixed-point index theory (see, for
example, [35]) yields the following theorem on the existence of multiple positive
solutions for equation (2.1).
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Theorem 2.4. Equation (2.1) has at least one positive solution in K if either of
the following conditions holds:

(H1) there exist ρ1, ρ2 ∈ (0,∞) with ρ1 < ρ2 such that (2.6) holds for ρ1 and (2.7)
holds for ρ2;

(H2) there exist ρ1, ρ2 ∈ (0,∞) with ρ1 < cρ2 such that (2.7) holds for ρ1 and (2.6)
holds for ρ2.

Equation (2.1) has at least two positive solutions in K if one of the following con-
ditions holds:

(S1) there exist ρ1, ρ2, ρ3 with ρ1 < ρ2 and ρ2 < cρ3 such that (2.6) holds for ρ1,
(2.7) holds for ρ2 and (2.6) holds for ρ3;

(S2) there exist ρ1, ρ2, ρ3 with ρ1 < cρ2 < cρ3 such that (2.7) holds for ρ1, (2.6)
holds for ρ2 and (2.7) holds for ρ3.

Moreover, when (S1) holds, (2.1) has a third solution, u0 ∈ Kρ1 (possibly zero).

It is routine to state results for the existence of three, four or an arbitrary number
of positive solutions by expanding the lists in conditions (S1) and (S2). We illustrate
the statement for three solutions in theorem 3.1, below, and indicate there (see
figure 1) what the restrictions mean for the nonlinearity f . We leave these to the
reader, who may consult [16,18] to see such statements.

3. Clamped ends

We first consider equation (1.1) in the clamped ends case, that is with BCs

u(0) = 0, u(1) = 0, u′(0) = 0, u′(1) = 0. (3.1)

The Green’s function associated with (1.1), (3.1) is (see, for example, [14])

k(t, s) =

{
1
6s2(1 − t)2(3t − 2ts − s), s � t,
1
6 t2(1 − s)2(3s − 2ts − t), s > t.

(3.2)

We note that k has the following symmetry properties:

k(t, s) = k(s, t) = k(1 − s, 1 − t). (3.3)

By a solution of the BVP (1.1) we shall mean a fixed-point of the integral equation

u(t) =
∫ 1

0
k(t, s)g(s)f(s, u(s)) ds := Su(t), (3.4)

with k(t, s) as in (3.2), that is, a fixed point of S.
Here k is continuous so (C1) holds. We have to verify the condition (C2).
By the symmetry properties (3.3) it is sufficient to show the upper bounds in

(C2) for 0 � s � 1
2 .

It is stated in [38] that

k(t, s) � Φ(s) =
2
3

s2(1 − s)3

(3 − 2s)2
for 0 � s � 1

2 ,
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and that
c1(t) = 2

3 t2 for 0 � t � 1
2 .

Indeed, it is readily verified by calculus that Φ(s) = max0�t�1 k(t, s). By the sym-
metry properties of k we may choose

Φ(s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2
3

s2(1 − s)3

(3 − 2s)2
for 0 � s � 1

2 ,

2
3

s3(1 − s)2

(1 + 2s)2
for 1

2 < s � 1.

We will obtain a more precise estimate for c1(t) satisfying (C ′
2) than that from [38],

above, which will allow us to give stronger results.
For 0 � t � 1

2 and t < s � 1
2 we want to find c1(t) so that

1
6 t2(1 − s)2(3s − 2ts − t) � c1(t)

2
3

s2(1 − s)3

(3 − 2s)2
,

that is,
c1(t)
t2

� 1
4

(3s − 2ts − t)(3 − 2s)2

s2(1 − s)
.

The derivative of the right-hand side of this inequality with respect to s is negative
for all s ∈ [t, 1

2 ]. Therefore, the right-hand side is a decreasing function of s and so
has its minimum value when s = 1

2 . Thus, it suffices to have

c1(t) � 4t2(3 − 4t).

For 0 � t � 1
2 and s � t we need c1(t) such that

1
6s2(1 − t)2(3t − 2ts − s) � c1(t)

2
3

s2(1 − s)3

(3 − 2s)2
,

that is,
c1(t)

(1 − t)2
� 1

4
(3t − 2ts − s)(3 − 2s)2

(1 − s)3
.

The right-hand side, as a function of s, has precisely one critical point when s =
1
2 (3 − 1/t), and this is a local maximum, so the minimum occurs either for s = 0
or for s = t. Thus, it suffices to have

c1(t) � min{ 1
2 t(3 − 2t)2, 27

4 t(1 − t)2}.

For 0 � t � 1
2 and 1

2 � s � 1 we require

1
6 t2(1 − s)2(3s − 2ts − t) � c1(t)

2
3

s3(1 − s)2

(1 + 2s)2
,

that is
c1(t)
t2

� (1 + 2s)2(3s − 2ts − t)
4s3 .
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The sign of the derivative shows that the right-hand side is a decreasing function
of s ∈ [ 12 , 1], and so its minimum is attained at s = 1. Hence, we need

c1(t) � 27
4 t2(1 − t).

The total requirement, for 0 � t � 1
2 , is

c1(t) = min{4t2(3 − 4t), 1
2 t(3 − 2t)2, 27

4 t(1 − t)2, 27
4 t2(1 − t)} = 27

4 t2(1 − t).

From the symmetry properties of k, we therefore have

c1(t) =

⎧⎨
⎩

27
4 t2(1 − t), t ∈ [0, 1

2 ],

27
4 t(1 − t)2, t ∈ ( 1

2 , 1].

We now compute the constants m and M = M(a, b) for the special case g ≡ 1. We
have

1
m

= sup
t∈[0,1]

∫ 1

0
k(t, s) ds,

1
M(a, b)

:= inf
t∈[a,b]

∫ b

a

k(t, s) ds,

and, by direct calculation, obtain m = 384. Kosmatov [16] has this value of the
constant, but Yao [38] has a constant 
 368, which gives worse results. The ‘optimal’
[a, b], the interval for which M(a, b) is a minimum, is given (for example, using
Maple) by the interval

[0.3037, 0.6963]. (3.5)

This gives M = 812.6995 and c1 = 0.4336. (Here and throughout the paper, con-
stants have been rounded to four decimal places unless they are exact.) Yao [38] has
an interval [a, b] and gives expressions for the constants he uses. When specialized
to [a, b] = [14 , 3

4 ] he gives the values of c1 = 1
24 = 0.0417 and a constant B which

computes to B 
 1839, and where B/c 
 44153 replaces our M , so this is far from
a good value. Kosmatov [16] uses c1(t) = 2

3 t4 (giving too small a value for c1) and
he computes (M(a, 1 − a))−1 = 1

24a2(1 − 2a)(1 − 2a2). However, he does not show
that the minimal value of M(a, b) is M(a, 1− a). Nor does he compute the value of
a that achieves this minimum, but this can easily be deduced from this formula as
a = 0.3037. We found this value above by a different calculation.

Theorem 3.1. Let m, M , c1 be as in the previous paragraph. Then the clamped-
ends BVP (1.1), (3.1) with g ≡ 1 has at least three positive solutions if either (T1)
or (T2) holds.

(T1) There exist 0 < ρ0 < ρ0/c1 < ρ1 < ρ2 < ρ2/c1 < ρ3 < ∞, such that

fρ0,ρ0/c1 > M, f0,ρ1 < m, fρ2,ρ2/c1 > M, f0,ρ3 < m.

(T2) There exist 0 < ρ0 < ρ1 < ρ1/c1 < ρ2 < ρ3 < ∞, such that

f0,ρ0 < m, fρ1,ρ1/c1 > M, f0,ρ2 < m, fρ3,ρ3/c1 > M.

Remark 3.2. When g �= 1 and (C3) is satisfied, the same result holds but the
constants m and M have to be computed for that particular g. In condition (T1)
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Figure 1. The graph of f cannot lie in the dashed region.

we may replace f0,ρ3 < m by f∞ < µ1 and replace fρ0,ρ0/c1 > M by f0 > µ1. In
condition (T2) we may replace f0,ρ0 < m by f0 < µ1 and replace fρ3,ρ3/c1 > M by
f∞ > µ1. This gives stronger results when ρ0 is very small and ρ3 is very large, since
it has been shown in [36] that m � µ1 � M always holds, with strict inequality
unless eigenfunctions are constants. Some other estimates of µ1 may be found in [34].

Remark 3.3. Note that the values of ρi are not independent. For example, in (T1)
it is necessary that Mρ0 < mρ1 and Mρ2 < mρ3. Figure 1 (not to scale) illustrates
how, when f depends only on u, the graph of f is restricted in order to satisfy (T1),
and makes it clear that the conditions can readily be satisfied. The figure is easily
modified when the conditions involving µ1 are employed.

The eigenvalue µ1 can be calculated directly from the differential equation (or
numerically from the integral equation) when g ≡ 1. An eigenfunction is of the form

ϕ(t) = sin(ωt) − sinh(ωt) + C(cos(ωt) − cosh(ωt)),

where C is a constant, and a small calculation shows that ω is a root of the equation
cos(ω) cosh(ω) = 0. The smallest positive root of this equation is ω = 4.7300 and
µ1 = ω4 = 500.5639. Comparing this with m = 384, and the optimal M = 812.6995
found above, shows that using µ1 in place of m and M , whenever possible as in
remark 3.2 above, gives better results, and gives a sharp result for the existence of
one positive solution.

3.1. The boundary conditions (1.4)

We now consider the equation (1.1) with the non-local BCs

u(0) = 0, u(1) = α[u], u′(0) = 0, u′(1) = 0, (3.6)

where

α[u] =
∫ 1

0
u(s) dA(s)



438 J. R. L. Webb, G. Infante and D. Franco

for a signed measure dA. By a solution of the BVP (1.1), (3.6) we shall mean a
solution of the perturbed integral equation (see [35])

u(t) = γ(t)α[u] +
∫ 1

0
k(t, s)g(s)f(s, u(s)) ds,

where γ satisfies the BVP

γ(4)(t) = 0, γ(0) = 0, γ(1) = 1, γ′(0) = 0, γ′(1) = 0.

Thus, the perturbed integral equation is

u(t) = t2(3 − 2t)α[u] +
∫ 1

0
k(t, s)g(s)f(s, u(s)) ds, (3.7)

with k(t, s) as in (3.2). We have ‖γ‖ = 1 and mint∈[a,b] γ(t) = γ(a) = 0.2207 ([a, b]
as in (3.5)), so we need c2 = 0.2207; therefore, c = 0.2207. We could immediately
write down a theorem on existence of multiple positive solutions using theorem 2.4.
Since the statements are now routine, similar to but more complicated than those
of theorem 3.1, we omit them here; see § 4.1, below, for an example of an explicit
calculation.

Example 3.4 (a discrete (four-point) problem). Consider the BC

u(0) = 0, u(1) = α1u(η1) + α2u(η2), u′(0) = 0, u′(1) = 0, 0 < η1 < η2 < 1.

We will now determine the restrictions to be placed on α1, α2 so that our hypotheses
are satisfied.

We have α[u] = α1u(η1) + α2u(η2). Then α[γ] = α1η
2
1(3 − 2η1) + α2η

2
2(3 − 2η2),

so we require
0 � α1η

2
1(3 − 2η1) + α2η

2
2(3 − 2η2) < 1. (3.8)

We also have K(s) = α1k(η1, s) + α2k(η2, s). To satisfy K(s) � 0 we need

α1s
2(1 − η1)2(3η1 − 2η1s − s) + α2s

2(1 − η2)2(3η2 − 2η2s − s) � 0, 0 � s � η1,

α1η
2
1(1 − s)2(3s − 2η1s − η1) + α2s

2(1 − η2)2(3η2 − 2η2s − s) � 0, η1 < s � η2,

α1η
2
1(1 − s)2(3s − 2η1s − η1) + α2η

2
2(1 − s)2(3s − 2η2s − η2) � 0, s > η2.

Note that the condition K(s) � 0 is automatically satisfied for positive coeffi-
cients.

Example 3.5. We give a numerical example to illustrate the type of restriction
placed on the coefficients in the above four-point problem and to show that some
negative coefficients are allowed. Taking η1 = 1

4 , η2 = 3
4 , the conditions become

0 � 5α1 + 27α2 < 32, (3.9)

and

27α1(1 − 2s) + α2(9 − 10s) � 0 for 0 � s � 1
4 , (3.10)

α1(1 − s2)(10s − 1) + α2s
2(9 − 10s) � 0 for 1

4 < s � 3
4 , (3.11)

α1(10s − 1) + 27α2(2s − 1) � 0 for 3
4 < s � 1. (3.12)
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Figure 2. Part of the region for positive solutions.

This defines a region in the (α1, α2)-plane which includes the one shown in figure 2
(not to scale) and is much larger than the ‘obvious’ region, obtained when all
coefficients are assumed to be non-negative and defined by

α1 � 0, α2 � 0, 0 � 5α1 + 27α2 < 32. (3.13)

3.2. The boundary conditions (1.5)

Solutions of equation (1.1) with the non-local BCs

u(0) = 0, u(1) = 0, u′(0) = 0, u′(1) + α[u] = 0, (3.14)

can be found as solutions of

u(t) = γ(t)α[u] +
∫ 1

0
k(t, s)g(s)f(s, u(s)) ds,

where γ satisfies the BVP

γ(4)(t) = 0, γ(0) = 0, γ(1) = 0, γ′(0) = 0, γ′(1) + 1 = 0,

that is,

u(t) = t2(1 − t)α[u] +
∫ 1

0
k(t, s)g(s)f(s, u(s)) ds, (3.15)

with k(t, s) as in (3.2). Here γ has one critical point in (0, 1) at t = 2
3 , which is

a local maximum. Hence, we have ‖γ‖ = 4
27 = 0.1481 and, with [a, b] as in (3.5),

mint∈[a,b] γ(t) = γ(a) = 0.0642, so we need c2 = 0.4336; therefore, c = 0.4336.

4. Hinged ends

We now turn our attention to equation (1.1) with the hinged ends BCs

u(0) = 0, u(1) = 0, u′′(0) = 0, u′′(1) = 0. (4.1)
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The Green’s function associated with the BVP (1.1), (4.1) is (see, for example, [14]),

k(t, s) =

{
1
6s(1 − t)(2t − s2 − t2), s � t,

1
6 t(1 − s)(2s − t2 − s2), s > t.

(4.2)

We note that k has the same symmetries as above, that is

k(t, s) = k(s, t) = k(1 − s, 1 − t). (4.3)

The BVP (1.1) can be rewritten in integral form as

u(t) =
∫ 1

0
k(t, s)g(s)f(s, u(s)) ds, (4.4)

with k(t, s) as in (4.2).
We again have to verify (C2). By the symmetry properties (4.3), it is sufficient

to show the upper bounds in (C2) for 0 � s � 1
2 .

For 0 � s � 1
2 and s � t we have
1
6s(1 − t)(2t − s2 − t2) � k(τ(s), s) =

√
3

27 s(1 − s2)3/2,

where
τ(s) := 1 −

√
3

3

√
1 − s2.

For 0 � s � 1
2 and s > t we have

1
6 t(1 − s)(2s − t2 − s2) � k(s, s) = 1

3s(1 − s)(s − s2).

Since, for 0 � s � 1
2 , we have

max{
√

3
27 s(1 − s2)3/2, 1

3s(1 − s)(s − s2)} =
√

3
27 s(1 − s2)3/2,

using the symmetry properties of k we may choose

Φ(s) =

⎧⎨
⎩

√
3

27 s(1 − s2)3/2 for 0 � s � 1
2 ,

√
3

27 (1 − s)s3/2(2 − s)3/2 for 1
2 < s � 1.

We now determine c1(t) so that (C ′
2) holds, that is k(t, s) � c1(t)Φ(s). Using (4.3),

it suffices to consider only the case 0 � t � 1
2 . For 0 � t � 1

2 and s � t we want

1
6s(1 − t)(2t − s2 − t2) � c1(t)

√
3

27 s(1 − s2)3/2,

that is,
c1(t)

(1 − t)
� 3

√
3

2
(2t − s2 − t2)
(1 − s2)3/2 .

The right-hand side, considered as a function of s, has a critical point at s =√
6t − 3t2 − 2 but this is in the correct range only when 0.422 
 1 −

√
3

3 � t � 1
2 .

This value corresponds to a maximum so the minimum is for s = t or s = 0. Thus,
we need

c1(t) � min
{

3
√

3
t(1 − t)2

(1 − t2)3/2 ,
3
√

3
2

t(1 − t)(2 − t)
}

.

The first case occurs when 0 � t � 0.45668, the second when 0.45668 < t � 1
2 .
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For 0 � t � 1
2 and t < s � 1

2 we require

1
6 t(1 − s)(2s − t2 − s2) � c1(t)

√
3

27 s(1 − s2)3/2,

that is
c1(t)

t
� 3

√
3(1 − s)(2s − t2 − s2)

2s(1 − s2)3/2 .

The derivative of the right-hand side with respect to s is negative for all s ∈ [t, 1
2 ].

Thus, the right-hand side is a decreasing function of s with its minimum at s = 1
2 .

Therefore, we need
c1(t) � 4t( 3

4 − t2).

For 0 � t � 1
2 and 1

2 � s � 1 we want to show that

1
6 t(1 − s)(2s − t2 − s2) � c1(t)

√
3

27 (1 − s)(s(2 − s))3/2

or

c1(t)
t

� 3
√

3(2s − t2 − s2)
2(s(2 − s))3/2 .

The sign of the derivative shows that the right-hand side is decreasing, so its min-
imum occurs when s = 1. Therefore, we need to have

c1(t) � 3
2

√
3t(1 − t2).

Hence, we may take, for 0 � t � 1
2 ,

c1(t) = min
{

3
√

3
t(1 − t)2

(1 − t2)3/2 , 4t( 3
4 − t2), 3

2

√
3t(1 − t2), 3

2

√
3t(1 − t)(2 − t)

}

= 3
2

√
3t(1 − t2).

By the symmetry properties of k, this yields

c1(t) =

⎧⎨
⎩

3
√

3
2 t(1 − t2) for t ∈ [0, 1

2 ],
3
√

3
2 t(1 − t)(2 − t) for t ∈ ( 1

2 , 1].

Note that one can write the Green’s function in this case in the form

k(t, s) =
∫ 1

0
k0(t, τ)k0(τ, s) dτ,

where

k0(t, s) =

{
s(1 − t) if s � t,

t(1 − s) if s > t,

is the Green’s function for the BVP

−u′′ = 0, u(0) = u(1) = 0,

because the BVP (1.1) can be written as the product of the two second-order
operators. This has been done by a number of authors (see, for example, [2,11,39]).



442 J. R. L. Webb, G. Infante and D. Franco

A simple method of obtaining some Φ(s) and some c1(t) is then to use the easily
proved, well-known fact that

c0(t)Ψ(s) � k0(t, s) � Ψ(s)

for Ψ(s) = s(1 − s) and c0(t) = min{t, 1 − t}. One then has

k(t, s) �
∫ 1

0
Ψ(τ)k0(τ, s) dτ

and

k(t, s) � c0(t)
∫ 1

0
Ψ(τ)k0(τ, s) dτ.

This yields c1(t) = c0(t), which is smaller than the constant we obtain; hence, we
obtain stronger results. This simple factorization is not possible for the clamped
ends case.

The constants m, M for the case g ≡ 1 are as follows. We find that m = 384
5 =

76.8, and the optimal [a, b] is found to be [14 , 3
4 ] (for example, by using Maple).

This yields M = 768
5 = 153.6 and c1 = 45

√
3

128 = 0.6089.
The eigenvalue µ1 when g ≡ 1 is π4 = 97.4091 (being a product of the two well-

known second-order operators), which again shows that using µ1 in place of m, M
as in remark 3.2 leads to better results.

Hao and Debnath [11] prove the existence of one or two positive solutions using
stronger conditions than we impose. They do not find an explicit constant m and
assume that f(t, u)/u → ∞ as u → 0+ or as u → ∞. Graef and Yang [7] prove
the existence of one positive solution using constants similar to m and M . Bai and
Wang [2] study multiple solutions; they use the constant m = 384

5 , take c = 1
4 and

have a constant B with B/c in place of M , where B/c = 641.2308. Yao [39] deals
with a more general equation which includes this one as a special case. In our case,
Yao also has worse constants. In place of ‘m’ he has A′ = 36. He has c = 1

4 , but
in place of M he has B′/c = 1312; these are approximations of the exact values he
can use. He writes ‘the constants A, B are not easy to compute explicitly’ and he
replaces A by A′ and B by B′. For our special case we see that it is not difficult to
compute the optimal constants for this method.

A theorem, with the same wording as theorem 3.1, holds here; we do not repeat
the statement.

4.1. The boundary conditions (1.6)

Equation (1.1), subject to the non-local BCs

u(0) = 0, u(1) = α[u], u′′(0) = 0, u′′(1) = 0, (4.5)

can be written, as before, in integral form as

u(t) = tα[u] +
∫ 1

0
k(t, s)g(s)f(s, u(s)) ds, (4.6)

with k(t, s) as in (4.2). Here ‖γ‖ = 1 and mint∈[1/4,3/4] γ(t) = 1
4 , so we need c2 = 1

4 ;
therefore, c = 1

4 .
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To illustrate what the existence theorem similar to theorem 3.1 would say for
these BCs when g ≡ 1, we consider the simple special case when α[u] = αu( 1

2 ) with
α a constant. We have α[γ] = 1

2α so we need 0 � α < 2. To obtain the index results
of theorem 2.2 we need to compute∫ 1

0
K(s) ds and

∫ 3/4

1/4
K(s) ds.

We have ∫ 1

0
K(s) ds = 2

∫ 1/2

0
αk( 1

2 , s) ds = 2
∫ 1/2

0
α

s( 3
4 − s2)
12

ds =
5α

384
,

and ∫ 3/4

1/4
K(s) ds = 2

∫ 1/2

1/4
α

s( 3
4 − s2)
12

ds =
38α

4096
=

19α

2048
.

The conditions become

f0,ρ

(
2

2 − α

5α

384
+

5
384

)
< 1 =⇒ iK(T, Kρ) = 1,

and

fρ,4ρ

(
1/2

2 − α

19α

2048
+

5
768

)
> 1 =⇒ iK(T, Vρ) = 0.

For example, when α = 1, these become

f0,ρ < 25.6 =⇒ iK(T, Kρ) = 1, fρ,4ρ > 89.6934 =⇒ iK(T, Vρ) = 0.

These numbers 25.6 and 89.6934 replace m and M in theorem 3.1 and give an
explicit result for the existence of multiple positive solutions of the three-point
BVP.

The eigenvalue µ1 can be calculated for this example. An eigenfunction is given
by

ϕ(t) = sinh(ω) sin(ωt) + sin(ω) sinh(ωt)

and a small calculation shows that ω is a root of the equation

cosh(ω) + cos(ω) = 4 cosh(ω) cos(ω).

The smallest positive root of this equation is ω = 2.5593 and µ1 = ω4 = 42.9023,
once more illustrating that using the eigenvalue rather than m, M , as in remark 3.2,
gives stronger results.

4.2. The boundary conditions (1.7)

Similarly, as above, equation (1.1) with the BCs

u(0) = 0, u(1) = 0, u′′(0) = 0, u′′(1) + α[u] = 0, (4.7)
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can be written in integral form as

u(t) = 1
6 t(1 − t2)α[u] +

∫ 1

0
k(t, s)g(s)f(s, u(s)) ds, (4.8)

with k(t, s) as in (4.2). We have ‖γ‖ = γ( 1√
3
) =

√
3

27 and mint∈[1/4,3/4] γ(t) = 5
128 ,

so we need c2 = 0.6089 = c1 = c.

Remark 4.1. Results for each of the BCs

u(0) = α[u], u(1) = 0, u′(0) = 0, u′(1) = 0,

u(0) = 0, u(1) = 0, u′(0) = α[u], u′(1) = 0,

u(0) = α[u], u(1) = 0, u′′(0) = 0, u′′(1) = 0,

u(0) = 0, u(1) = 0, u′′(0) + α[u] = 0, u′′(1) = 0,

are easily obtained by simply changing the variable from t to τ = 1 − t, which
converts them into the types above, with the obvious modifications. We therefore
omit the details.

Remark 4.2. Dalmasso [3, 4] has proved a uniqueness result for u(4)(t) = f(u(t))
for both the clamped ends case and the hinged ends case under the assumptions
f ∈ C1 and

0 < f(u) < uf ′(u) for u > 0.

This is equivalent to f ∈ C1 and f(u)/u being strictly increasing for u > 0. This is
consistent with our work, since it is impossible to have a figure such as figure 1 for
two or more positive solutions when f(u)/u is strictly increasing. For the hinged end
case only, [2, theorem 5.1] claims a uniqueness result, which allows f to have explicit
t dependence, under the conditions that, for each t, f(t, u) is strictly positive and
increasing, and f(t, u)/u is either increasing or decreasing. However, the claimed
result is incorrect. In the case when f(t, u)/u is decreasing, the following example
shows that there can be infinitely many solutions. For a constant θ > 0, the BVP

u(4)(t) = π4u(t) + θ, u(0) = 0, u(1) = 0, u′′(0) = 0, u′′(1) = 0

has a positive solution c sin(πt) + 1
12θ(t4 − 2t3 + t) for each c > 0.

A similar counterexample, replacing π4 by the eigenvalue, shows that the same
happens in the clamped ends case. When f depends explicitly on t, as far as the
authors are aware, the uniqueness question remains open.
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