5 research outputs found

    DC-SIGN(+) Macrophages Control the Induction of Transplantation Tolerance

    Get PDF
    Tissue effector cells of the monocyte lineage can differentiate into different cell types with specific cell function depending on their environment. The phenotype, developmental requirements, and functional mechanisms of immune protective macrophages that mediate the induction of transplantation tolerance remain elusive. Here, we demonstrate that costimulatory blockade favored accumulation of DC-SIGN-expressing macrophages that inhibited CD8(+) T cell immunity and promoted CD4(+)Foxp3(+) Treg cell expansion in numbers. Mechanistically, that simultaneous DC-SIGN engagement by fucosylated ligands and TLR4 signaling was required for production of immunoregulatory IL-10 associated with prolonged allograft survival. Deletion of DC-SIGN-expressing macrophages in vivo, interfering with their CSF1-dependent development, or preventing the DC-SIGN signaling pathway abrogated tolerance. Together, the results provide new insights into the tolerogenic effects of costimulatory blockade and identify DC-SIGN(+) suppressive macrophages as crucial mediators of immunological tolerance with the concomitant therapeutic implications in the clinic.This work was supported by the COST Action BM1305: Action to Focus and Accelerate Cell Tolerogenic Therapies (A FACTT), the Mount Sinai Recanati/Miller Transplantation Institute developmental funds, AST/Pfizer Basic Science Faculty Development Grant, Ministerio de Educacióny Ciencia SAF2010-15062, SAF2013-48834-R, and Fundación Mutua Madrileñ a grants to J.O. A portion of this work appears as part of the doctoral thesis of P.C.S

    Hepatocyte growth factor/c-Met signaling is required for β-cell regeneration

    Get PDF
    Hepatocyte growth factor (HGF) is a mitogen required for β-cell replication during pregnancy. To determine whether HGF/c-Met signaling is required for β-cell regeneration, we characterized mice with pancreatic deletion of the HGF receptor, c-Met (PancMet KO mice), in two models of reduced β-cell mass and regeneration: multiple low-dose streptozotocin (MLDS) and partial pancreatectomy (Ppx). We also analyzed whether HGF administration could accelerate β-cell regeneration in wild-type (WT) mice after Ppx. Mouse islets obtained 7 days post-Ppx displayed significantly increased c-Met, suggesting a potential role for HGF/c-Met in β-cell proliferation in situations of reduced β-cell mass. Indeed, adult PancMet KO mice displayed markedly reduced β-cell replication compared with WT mice 7 days post-Ppx. Similarly, β-cell proliferation was decreased in PancMet KO mice in the MLDS mouse model. The decrease in β-cell proliferation post-Ppx correlated with a striking decrease in D-cyclin levels. Importantly, PancMet KO mice showed significantly diminished β-cell mass, decreased glucose tolerance, and impaired insulin secretion compared with WT mice 28 days post-Ppx. Conversely, HGF administration in WT Ppx mice further accelerated β-cell regeneration. These results indicate that HGF/c-Met signaling is critical for β-cell proliferation in situations of diminished β-cell mass and suggest that activation of this pathway can enhance β-cell regeneration. © 2014 by the American Diabetes Association.This work was supported in part by grants from the National Institutes of Health (DK-067351 and DK-077096) and the Juvenile Diabetes Research Foundation (1-2007-3) to A.G.-O. S.E. was the recipient of a postdoctoral fellowship from the National Institutes of Health T32 Research Training grant (T32DK-07052-32). C.D. was the recipient of a research fellowship from the Lawson Wilkins Pediatric Endocrine Society.Peer Reviewe

    PKCzeta Is Essential for Pancreatic beta-Cell Replication During Insulin Resistance by Regulating mTOR and Cyclin-D2

    No full text
    Adaptive beta-cell replication occurs in response to increased metabolic demand during insulin resistance. The intracellular mediators of this compensatory response are poorly defined and their identification could provide significant targets for beta-cell regeneration therapies. Here we show that glucose and insulin in vitro and insulin resistance in vivo activate protein kinase C zeta (PKCzeta) in pancreatic islets and beta-cells. PKCzeta is required for glucose- and glucokinase activator-induced proliferation of rodent and human beta-cells in vitro. Furthermore, either kinase-dead PKCzeta expression (KD-PKCzeta) or disruption of PKCzeta in mouse beta-cells blocks compensatory beta-cell replication when acute hyperglycemia/hyperinsulinemia is induced. Importantly, KD-PKCzeta inhibits insulin resistance-mediated mammalian target of rapamycin (mTOR) activation and cyclin-D2 upregulation independent of Akt activation. In summary, PKCzeta activation is key for early compensatory beta-cell replication in insulin resistance by regulating the downstream signals mTOR and cyclin-D2. This suggests that alterations in PKCzeta expression or activity might contribute to inadequate beta-cell mass expansion and beta-cell failure leading to type 2 diabetes
    corecore