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SUMMARY

Tissue effector cells of the monocyte lineage can differentiate into different cell types with 

specific cell function depending on their environment. The phenotype, developmental 

requirements, and functional mechanisms of immune protective macrophages that mediate the 

induction of transplantation tolerance remain elusive. Here, we demonstrate that costimulatory 

blockade favored accumulation of DC-SIGN-expressing macrophages that inhibited CD8+ T cell 

immunity and promoted CD4+Foxp3+ Treg cell expansion in numbers. Mechanistically, that 

simultaneous DC-SIGN engagement by fucosylated ligands and TLR4 signaling was required for 

production of immunoregulatory IL-10 associated with prolonged allograft survival. Deletion of 

DC-SIGN-expressing macrophages in vivo, interfering with their CSF1-dependent development, 

or preventing the DC-SIGN signaling pathway abrogated tolerance. Together, the results provide 

new insights into the tolerogenic effects of costimulatory blockade and identify DC-SIGN+ 

suppressive macrophages as crucial mediators of immunological tolerance with the concomitant 

therapeutic implications in the clinic.

Graphical abstract

INTRODUCTION

Myeloid cells with suppressive activity inhibit graft-reactive T cell immunity and facilitate 

induction of regulatory T (Treg) cells, together enabling the induction of transplantation 

tolerance (Dugast et al., 2008; Garcia et al., 2010; Zhang et al., 2008). An emerging 

consensus is that myeloid cells with immune regulatory function are contained within a 

population of CD11b+ mononuclear cells that express the myeloid differentiation antigen 

Gr-1 (Bronte et al., 2000; Bronte et al., 1998). Given the wide range of myeloid cells that 

might be included in this category, identifying specific myeloid subsets capable of mediating 

suppression, understanding the molecular basis of their developmental requirements, and 
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deciphering the mechanisms that control their immune regulatory function represents a 

difficult task.

In previously published work, we demonstrated that monocytic cells that co-express CD11b, 

Gr-1, and the macrophage colony-stimulating factor 1 receptor (CSF1R) accumulate in 

cardiac allografts during tolerance induction, mediate T cell suppression in vitro, and are 

required for long-term graft survival induced by donor-specific transfusion plus anti-CD40L 

mAb (Garcia et al., 2010). Building upon these published observations, and the recognition 

that Gr-1 comprises the distinct and independently regulated surface-expressed 

glycoproteins Ly6C and Ly6G (Fleming et al., 1993), we demonstrate that myeloid 

suppressive cells expressing CD11b+CSF1R+Ly6Clo Ly6G−CD169+ are responsible for 

transplantation tolerance. Transcriptome analysis revealed that graft infiltrating immune 

regulatory CD11b+CSF1R+Ly6CloLy6G−CD169+ monocyte-derived cells correspond to 

suppressive macrophages.

Blockade of the CD40L-CD40 costimulatory pathway promotes the conversion of 

immunogenic CD11b+CSF1R+Ly6Chi Ly6G−CD169− into suppressive 

CD11b+CSF1R+Ly6CloLy6G− CD169+ macrophages through partial inhibition of 

interferon-γ (IFN-γ) production in the transplanted allograft. The conversion process 

requires CSF1, and interfering with this cytokine or its receptor (CSF1R) abrogates the 

induction of indefinite allograft survival. Mechanistically, we demonstrate that the dendritic 

cell-specific ICAM-grabbing non-integrin (DC-SIGN, CD209a) is upregulated in 

CD11b+CSF1R+Ly6CloLy6G−CD169+-suppressive macrophages and that simultaneous 

DC-SIGN engagement by fucosylated ligands and TLR4 signaling is required for production 

of immunoregulatory interleukin-10 (IL-10) associated with immune regulation and 

prolonged allograft survival. In addition to delineating a unique set of phenotypic markers 

and offering new mechanistic insights into suppressive macrophage development and 

function during transplant tolerance, the data provide a foundation for developing robust 

protocols potentially capable of inducing immune regulatory macrophages for clinical use.

RESULTS

Suppressive Macrophages Accumulate during Tolerance Induction

To characterize myeloid cells that accumulate in allografts during tolerance induction, we 

transplanted BALB/c hearts (H-2d) into fully mismatched C57BL6/MaFIA (H-2b) recipient 

mice. These recipient animals constitutively express green fluorescent protein (GFP) under 

the CSF1R promoter, permitting us to identify recipient-derived graft-infiltrating myeloid 

cells that include monocytes, dendritic cells (DCs), macrophages, and neutrophils (Burnett 

et al., 2004). We treated groups of allograft recipients with anti-CD40L mAb (clone MR1) 

or with control anti-immuno-globulin G (IgG) mAb (Figure 1A), confirming previous work, 

which demonstrated that anti-CD40L mAb induced indefinite allograft survival, whereas 

rejection occurred by day 10 in the IgG-treated controls (Jiang et al., 2011). We harvested 

donor heart allografts on day 5 post-transplantation and analyzed graft-infiltrating 

leukocytes by flow cytometry. When we gated on live CD45+CD11b+CSF1RGFP+ recipient 

graft-infiltrating myeloid cells, we discerned three major populations based on differential 

expression patterns of Ly6C and Ly6G (Figure 1B). Quantitative analysis revealed a higher 
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frequency of CD11b+ CSF1R+Ly6CloLy6G− cells and a lower frequency of CD11b+ 

CSF1R+Ly6ChiLy6G− cells in the allografts of anti-CD40L mAb-treated recipients 

compared to rejecting animals (p < 0.01). No differences in the frequencies of Ly6G cells 

were observed between groups.

We tested the ability of each myeloid cell subset to inhibit anti-CD3 and anti-CD28 

stimulated CD8+ naive T cell proliferation (Figure 1C). The CD11b+CSF1R+Ly6CloLy6G− 

cell subset, but not the CD11b+CSF1R+Ly6ChiLy6G− cell subset obtained from anti-CD40L 

mAb treated recipients, was potently suppressive. The CD11b+CSF1R+Ly6CintLy6G+ cell 

subset obtained from the anti-CD40L mAb-treated recipients also exhibited a modest 

suppressive activity. None of the myeloid cell subsets obtained from control IgG treated 

rejecting allografts exhibited in vitro suppression. We next tested the ability of each myeloid 

cell subset to induce expansion of CD4+Foxp3+ Treg cell in vitro (Figure 1D). Consistent 

with suppression assay results, only the CD11b+CSF1R+Ly6CloLy6G− cells obtained from 

anti-CD40L mAb-treated recipients, promoted the expansion of CD4+Foxp3 expressing 

Treg cell numbers. Thus, the graft-infiltrating CD11b+CSF1R+Ly6CloLy6G− cell subset that 

accumulates in anti-CD40L mAb-treated recipients possess many of the properties reported 

to be associated with monocytic myeloid suppressor cells, including their ability of inhibit 

CD8 T cell proliferation (Gallina et al., 2006) and to promote CD4+Foxp3+ Treg cell 

number expansion (Huang et al., 2006).

Further gene array characterization of graft-infiltrating myeloid 

CD11b+CSF1R+Ly6CloLy6G− cells that accumulate in tolerized recipients revealed that 

suppressive CD11b+CSF1R+Ly6Clo Ly6G correspond to macrophages (Gautier et al., 

2012), but not dendritic cells (Miller et al., 2012) (Figure S1A). Morphological examination 

of flow-sorted graft-infiltrating myeloid subsets (Figure S1B) confirmed that myeloid 

CD11b+CSF1R+Ly6Clo Ly6G− cells are of monocytic origin.

Suppressive Macrophages Are Required for Tolerance Induction

The transcriptional analyses of myeloid cell subsets revealed significantly higher transcript 

expression of CX3CR1, F4/80, CD206 (mannose macrophage receptor), CD68, CD172 

(Sirp-α), CD169, and MHC-II in Ly6Clo suppressive macrophages from anti-CD40L mAb 

treated mice (Figure 2A). Flow cytometry confirmed higher expression of these proteins on 

suppressive macrophages, and we exploited their differential CD169 expression (Figure 2A 

and Figures S2A and S2B) along with the availability of CD169 diphtheria toxin receptor 

(DTR) mice (Miyake et al., 2007) to evaluate the suppressive function of Ly6CloCD169+ 

macrophages in vivo. We transplanted BALB/c hearts into anti-CD40L mAb-treated WT or 

CSF1RGFP+/ CD169DTR C57BL6 recipients and treated them with DT on the day of 

transplantation to deplete recipient CD169+ cells. Graft-infiltrating leukocytes by flow 

cytometry examined 5 days later (Figure 2B) showed specific depletion of recipient 

suppressive macrophages only in DT-treated animals. Depletion of Ly6CloCD169+ 

macrophages in the anti-CD40L mAb-treated recipients was associated with accumulation 

of memory or activated CD44hiCD62Llo CD8+ T cells on day 5 (Figures 2C and 2D) and a 

reduced percentage of graft infiltrating CD4+Foxp3+ Treg on day 21 posttransplant (Figure 

2E). To verify that in vitro suppressive Ly6CloCD169+ macrophages also exhibit inhibitory 
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function in vivo, we adoptively transferred CFSE-labeled CD8 T cells into anti-CD40L 

mAb-treated CD169DTR recipients and evaluated their ability to proliferate measured by 

CFSE dilution 5 days after DT treatment (Figure 2F). Whereas CD8 T cells transferred into 

tolerized recipients did not proliferate in vivo, CD8 T cells underwent proliferation in the 

allografts of tolerized recipients following depletion of CD169+ suppressive macrophages. 

Moreover, graft survival experiments showed that DT induced in vivo depletion of CD169+-

suppressive macrophages resulted in graft rejection by day 30 despite tolerogenic treatment 

with anti-CD40L mAb (p < 0.01) (Figure 2G). Thus, Ly6CloCD169+-suppressive 

macrophages that accumulate in the allografts of anti-CD40L mAb-treated recipients inhibit 

T cell immune responses in vivo and are required for the induction of transplantation 

tolerance.

CD40L Blockade Inhibits Accumulation of Immunogenic Macrophages

Graft-infiltrating myeloid subsets express CD40, but not CD40L (Figures S3A and S3B), 

suggesting that tolerogenic properties of the anti-CD40L mAb treatment are not due to a 

direct effect on monocyte-derived cells because they do not express CD40L. To test whether 

anti-CD40L mAb therapy induces suppressive macrophages via inhibiting transmission of a 

CD40-dependent signal on the myeloid cells, we attempted to circumvent the effects of the 

anti-CD40L mAb blockade by co-administering an agonistic anti-CD40 antibody FGK45.5, 

an antibody that has been shown to transmit CD40-dependent signals to APC in the absence 

of CD40L (Bennett et al., 1998; Rolink et al., 1996; Schoenberger et al., 1998). 

Administration of the agonistic anti-CD40 mAb promoted the accumulation of 

immunogenic Ly6Chi macrophages in the allograft (Figure 3A). CD40-mediated 

accumulation of Ly6Chi macrophages might be mediated by increased IFN-γ expression in 

the allografts of tolerized recipients (Jutila et al., 1988). To test for a link between CD40L-

CD40 ligation and IFN-γ-mediated Ly6Chi macrophage activation in our transplant model, 

we measured IFN-γ in the al-lografts of untreated recipients, tolerized recipients, and 

tolerized recipients co-treated with agonistic anti-CD40 mAb (Figure 3B). These assays 

showed reduction of intra-graft IFN-γ in the tolerized allografts compared to the untreated 

controls as previously reported (Hancock et al., 1996) but restoration of intra-graft IFN-γ 

observed in the anti-CD40 mAb co-treated recipient. On the contrary, agonistic CD40 

ligation-mediated accumulation of immunogenic Ly6Chi macrophages and increased intra-

graft IFN-γ expression was not observed in tolerized CD40-deficient (Cd40−/−) recipients 

(Figures 3C). Agonistic CD40 mAb abrogated the induction of tolerance despite CD40L 

blockade in wild-type (WT), but not in Cd40−/− recipients (Figure 3D). The data suggest that 

anti-CD40L mAb-induced tolerance can be abrogated by CD40 ligation, which favors the 

accumulation of Ly6Chi immunogenic macrophages in the allograft through IFN-γ. To 

confirm this hypothesis, we treated tolerized recipients with recombinant IFN-γ and 

observed reduced intra-graft accumulation of Ly6Clo macrophages on day 5 (Figure 3E) 

associated with allograft rejection (Figure 3F). Conversely, partial IFN-γ blockade restored 

accumulation of Ly6Clo macrophages in the allografts (Figure 3G) and reestablished 

indefinite allograft survival (Figure 3H) in tolerized recipients despite agonistic anti-CD40 

mAb treatment. Thus, costimulation blockade with anti-CD40L mAb prevents IFN-γ 

production and accumulation of immunogenic Ly6Chi macrophages in the transplanted 

allografts.
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CSF1 Mediates the Development of Suppressive Macrophages

The expression of CSF1R in CD11b+CSF1R+Ly6CloLy6G− CD169+-suppressive 

macrophages suggests an involvement of CSF1 in the development of these cells. We 

quantified CSF1 transcripts in transplanted mice by RT-PCR (Figure 4A) and observed 

significant upregulation of CSF1 in the allografts of anti-CD40L mAb-treated recipients. To 

test for a mechanistic link between CSF1 and development of Ly6Clo-suppressive 

macrophages in anti-CD40L mAb-treated recipient mice, we transplanted BALB/c hearts 

into anti-CD40L mAb-treated tolerized C57BL6 recipients with or without neutralizing anti-

CSF1 mAb (clone 5A1) at doses shown by others to inhibit their function in vivo (Gregory 

et al., 1992). Our results indicate that in vivo CSF1 blockade abrogated intra-graft 

accumulation of Ly6Clo suppressive macrophages (Figure 4B). CSF1 blockade also 

prevented the in vivo expansion of CD4+ Foxp3+ Treg cell and abrogated the induction of 

transplantation tolerance (Figures 4C and 4D). In vivo blockade of CSF1R receptor (clone 

AFS98), at doses shown by others to inhibit their function in vivo (Hashimoto et al., 2011), 

also abrogated tolerance, which suggests that CSF1-CSF1R signaling is necessary for the 

development of suppressive macrophages. Ly6Chi monocytes convert into Ly6Clo 

macrophages (Arnold et al., 2007), the latter being able to function as suppressive cells in 

tumor models (Corzo et al., 2010). To test whether analogous mechanisms apply in 

transplant tolerance, we isolated CD11b+CSF1R+ Ly6ChiLy6G− GFP+ bone marrow 

monocytes from C57BL6/ MaFIA mice and transferred them into C57BL6/WT recipients 

with or without anti-CD40L mAb and anti-CSF1 blocking mAb (Figure 4E). Whereas the 

Ly6Chi monocytic precursors converted into Ly6Clo macrophages in the allografts of anti-

CD40L mAb-treated mice, Ly6Chi monocytic precursors from anti-CSF1 mAb-treated 

recipient mice failed to convert and maintained a Ly6Chi phenotype, similar to the untreated 

rejecting controls. Additional in vitro experiments confirmed that CSF1 mediates the 

conversion of Ly6Chi monocytic precursors into Ly6Clo myeloid cells that were functionally 

able to inhibit CD8+ T cell proliferation and promote Treg expansion (Figures 4F and 4G). 

Our in vitro human data is consistent with this hypothesis and suggests that CSF1, but not 

CSF2, promotes the development of CD14 monocytes into suppressive monocyte-derived 

cells that inhibit CD8 T cell proliferation and expand Foxp3-expressing Treg in vitro (Figure 

S4A) Thus, anti-CD40L mAb-induced tolerance requires prevention of IFN-γ production 

and upregulation of CSF1, the latter driving conversion of monocytic precursors into 

suppressive macrophages.

DC-SIGN Controls the Function of Suppressive Macrophages

CSF1 upregulates the expression of the dendritic-cell-specific intercellular adhesion 

molecule-3-grabbing non-integrin (DC-SIGN, CD209a) (Choi et al., 2011; Domínguez-Soto 

et al., 2011). Our gene array, real-time PCR, flow cytometry, and immunofluorescence 

studies revealed higher expression of DC-SIGN in macrophages obtained from the allografts 

of anti-CD40L mAb-treated mice, non-rejecting human renal transplant recipients, or in 

vitro derived CSF1-dependent human macrophages (Figures 5A–5C, Figures S5A–S5D). To 

test whether DC-SIGN is required for anti-CD40L mAb-induced allograft survival, we 

transplanted BALB/c hearts into WT C57BL6 recipients under the cover of anti-CD40L 

mAb, together with either a blocking anti-DC-SIGN mAb or an iso-type IgG control. DC-

SIGN blockade abrogated the induction of indefinite allograft survival in anti-CD40L mAb-
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treated mice (Figure 5D). When we isolated and compared graft-infiltrating leukocytes from 

anti-DC-SIGN mAb-treated recipients with control mice (all treated with anti-CD40L mAb), 

we observed similar frequencies of graft-infiltrating Ly6CloLy6G− macrophages, suggesting 

that anti-DC-SIGN mAb treatment does not prevent intra-graft accumulation of 

Ly6CloLy6G− macrophages (Figure 5E). However, whereas flow-sorted graft-infiltrating 

CD11b+CSF1R+Ly6CloLy6G− macrophages from tolerized recipients suppressed CD8+ T 

cell proliferation and expanded CD4+Foxp3+ Treg in vitro, flow-sorted CD11b+ 

CSF1R+Ly6CloLy6G− macrophages obtained from tolerized recipients treated with anti-DC-

SIGN mAb did not exhibit either of these immune regulatory functions (Figure 5F). Finally, 

we flow-sorted CD11b+CSF1R+Ly6CloLy6G− -suppressive macrophages from anti-CD40L 

mAb-treated recipients and assessed their ability to suppress CD8+ T cell proliferation and 

expanded CD4+Foxp3+ Treg following in vitro blockade of DC-SIGN by adding anti-DC-

SIGN mAb to the cell cultures (Figure 5G). Thus, DC-SIGN expression is required for the 

immune regulatory function of suppressive macrophages that mediate indefinite allograft 

survival. Using DC-SIGN deficient (CD209a−/−) and CD169DTR tumor bearing mice our 

data revealed that depletion of CD169+ macrophages or absence of DC-SIGN significantly 

reduces in vivo tumor growth (Figure S6A). Together with data from renal cell carcinoma 

patients showing increased DC-SIGN expression at the tumor site (Figure S6B), this 

suggests that DC-SIGN+ macrophages also participate in the immune regulatory function 

that controls tumor progression.

Fucosylated DC-SIGN Ligands Are Required for Macrophage-Mediated Suppression and 
Tolerance

DC-SIGN binds to carbohydrates containing mannose or fucose residues, such as LewisX 

(van Liempt et al., 2006). We next investigated the role of fucosylated LewisX in the 

induction of transplantation tolerance using the α1,3/4-fucosyltransferases (FucTs) IV-VII 

double-deficient (dKO) donor mice, which display impaired LewisX expression (Lowe, 

2002). We next used FucT-IV and FucT-VII mice as donors to evaluate the effects of 

LewisX inhibition on suppressive Ly6Clo macrophages and tolerance. Figure 6A indicates 

that the LewisX expression was significantly reduced in tolerized dKO donor allografts, 

which was associated with acute rejection despite tolerogenic treatment with anti-CD40L 

mAb (Figure 6B). We next compared recipient graft-infiltrating leukocytes from donor dKO 

and WT allografts treated with anti-CD40L mAb, and we observed similar frequencies of 

graft-infiltrating Ly6CloLy6G− macrophages (Figure 6C). These results suggest that LewisX 

deficiency does not prevent intra-graft accumulation of Ly6Clo macrophages. However, 

whereas flow-sorted graft-infiltrating Ly6Clo macrophages from WT donors suppressed 

CD8+ T cell proliferation and expanded CD4+Foxp3+ Treg cell in vitro, the flow-sorted 

Ly6Clo macrophages obtained from dKO donor allografts did not exhibit neither of these 

immune regulatory functions (Figure 6D). We next investigated whether lacto-N-

fucopentaose III (LNFPIII), a LewisX containing pentasaccharide that binds to DC-SIGN 

(Meyer et al., 2005), could overcome the fucosylated LewisX deficiency in dKO donor 

allograft recipients (Figure 6E). Our results indicate that unlike dextran (which does not bind 

to CD209a-mDC-SIGN [Takahara et al., 2004]), LNFPIII is able to restore tolerance in 

transplant recipients containing dKO donor allo-grafts. Flow-sorted graft-infiltrating Ly6Clo 

macrophages from LNFPIII-treated dKO donor allograft tolerized recipients were able to 
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suppress CD8+ T cell proliferation and expanded CD4+ Foxp3+ (Figure 6F). Our results 

indicate that in vivo LNFPIII treatment restores the suppressive activity of Ly6Clo 

macrophages. Thus, LewisX-mediated DC-SIGN ligation is necessary for the immune 

regulatory function of suppressive macrophages and for the induction of indefinite allograft 

survival.

IL-10 Is Essential for DC-SIGN-Mediated Suppression

Fucose-specific DC-SIGN signaling results in production of IL-10 (Caparrós et al., 2006; 

Gringhuis et al., 2014). We observed a significant IL-10 upregulation in the allografts of 

anti-CD40L mAb-treated WT recipients compared to untreated rejecting controls (Figure 

7A). In contrast, IL-10 was essentially absent in anti-CD40L mAb-treated DC-SIGN-

deficient (CD209a−/−) recipient mice. Among graft-infiltrating leukocytes, we detected the 

highest IL-10 expression in Ly6Clo macrophages obtained from anti-CD40L mAb treated 

recipients, but the same Ly6Clo macrophages obtained from the allografts of CD209a−/− 

recipients exhibited significant less IL-10 expression despite anti-CD40L mAb treatment 

(Figure 7A; Figure S7A). To specifically test whether IL-10 is required for regulatory 

macrophage function, we sorted intra-graft Ly6Clo macrophages from anti-CD40L mAb 

treated IL-10-deficient (Il10−/−) recipient mice and tested their ability to suppress CD8+ T 

cell proliferation and to expand CD4+Foxp3+ Treg cell in vitro (Figure 7B). In the absence 

of IL-10, Ly6Clo macrophages did not exhibit either of these immune regulatory functions 

despite tolerogenic treatment with anti-CD40L mAb. Using CD209a−/−recipient mice, we 

next investigated whether recombinant IL-10 could restore the suppressive function of 

Ly6Clo graft-infiltrating macrophages (Figure 7C). Although intra-graft CD209a−/−Ly6Clo 

macrophages were unable to suppress CD8+ T cell proliferation and to expand CD4+Foxp3+ 

Treg in vitro, IL-10 addition rescued the immune regulatory function of CD209a−/− Ly6Clo 

macrophages. Thus, graft-infiltrating DC-SIGN+Ly6Clo macrophages exert their immune 

regulatory function in part through an IL-10-dependent mechanism. Because crosstalk 

between DC-SIGN and TLR4 signaling is required for fucose binding-meditated production 

of IL-10 (Gringhuis et al., 2007; Gringhuis et al., 2014), we explored the effects of TLR4 

deficiency in suppressive macrophages using tolerized TRL4 recipients, and showed that in 

the absence of TLR4 stimulation, IL-10 production was reduced in Ly6Clo macrophages 

(Figure 7D), and their in vitro suppressive function was defective (Figure 7E). To 

demonstrate that synergistic DC-SIGN and TRL4 signaling was necessary for IL-10 

production, we cultured bone marrow cells from WT, CD209a−/−, and TRL4-deficient 

(Tlr4−/−) mice and stimulated them with the DC-SIGN ligand LewisX and the TLR4 ligand 

high mobility group box 1(HMGB1) (Figure 7F). Simultaneous DC-SIGN and TRL4 

signaling was necessary for optimal IL-10 production, and interfering with one of the signals 

resulted in impaired IL-10 production. We investigated whether ligation of DC-SIGN and/or 

TLR4 resulted in an increased inhibitory function (Figure 7G). Addition of both DC-SIGN 

and TLR4 agonists resulted in the highest suppressive function observed in monocyte-

derived human cells in comparison with each of the ligands alone. Thus, DC-SIGN+ 

macrophages stimulated though DC-SIGN and TLR4 are negative regulators of the immune 

response and that their manipulation will open new avenues for therapeutic intervention 

either by inhibiting their function (i.e., in cancer patients) or by enhancing their suppressive 

effects and promoting their expansion (i.e., in transplant recipients).

Conde et al. Page 8

Immunity. Author manuscript; available in PMC 2015 December 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



DISCUSSION

We demonstrate here that DC-SIGN-expressing macrophages are required for the induction 

of transplantation tolerance. DC-SIGN is a type II transmembrane C-type lectin with a 

carbohydrate recognition domain, which is expressed in human DCs and macrophages 

(Geijtenbeek et al., 2000; Soilleux et al., 2002), and is involved in multiple aspects of the 

immunological response (van Kooyk and Geijtenbeek, 2003). Broxmeyer and colleagues 

reported that in vitro differentiation of monocytes in the presence of M-CSF and IL-4, which 

induces DC-SIGN expression (Martinez et al., 2006), are less efficient inductors of 

allogeneic mixed lymphocyte reactions (Li et al., 2004; Li et al., 2005). Here, we extend 

these findings to newly demonstrate that DC-SIGN+ macrophages inhibit T cell proliferation 

in vitro and in vivo in an experimental mouse model of solid organ transplantation. 

Additionally, we demonstrate that human DC-SIGN expressing macrophages stimulated 

with M-CSF and IL-4 (Figure S5D) induced the expansion of Foxp3-expressing Treg from 

allogeneic naive CD4+ T cell precursors in vitro, whereas macrophages treated with GM-

CSF and IL-4 did not drive Treg expansion (Figure S4A).

The ability of murine DC-SIGN+ macrophages to promote IL-10-mediated transplantation 

tolerance requires two synergistic signals: DC-SIGN engagement by fucosylated ligands and 

TLR4 signaling. The CDR domain of human DC-SIGN recognizes fucosylated Lewis 

glycans (van Liempt et al., 2006) expressed by self and non-self antigens (Geijtenbeek et al., 

2004). In humans, DC-SIGN ligation potentiates the secretion of IL-10 (Geijtenbeek et al., 

2003). Because DC-SIGN macrophages secrete IL-10 upon fucose ligand engagement 

(Gringhuis et al., 2014) and participate in the generation of regulatory T cells (Cai et al., 

2013; Smits et al., 2005), DC-SIGN could actively contribute to the maintenance of an 

immunosuppressive tissue environment, as proposed by Yvette van Kooyk’s laboratory (van 

Gisbergen et al., 2005). Indeed, DC-SIGN ligation by non-immune cells, such as pathogens 

and tumor tissue results in immune escape (Geijtenbeek and Gringhuis, 2009), suggesting 

that both tumor and pathogens have ways to escape immune activation by targeting DC-

SIGN. Consistent with this hypothesis our data reveals that depletion of CD169+ 

macrophages or absence of DC-SIGN significantly reduces in vivo tumor growth (Figure 

S6A), suggesting that DC-SIGN+ macrophages might participate in the immune regulatory 

function that controls tumor progression (Figure S6B). Our transplant results indicate that 

fucosylated glycans are present in the donor allografts of tolerized recipients that serve as 

ligands of DC-SIGN expressing macrophages. Using fucosyltransferase-deficient donor 

heart allografts inhibits the expression of LewisX glycoproteins and prevents the induction 

of indefinite allograft survival despite tolerogenic treatment with anti-CD40L mAb 

treatment. This suggests common mechanisms of immune regulation following engagement 

of DC-SIGN by tumor and transplant microenvironment via LewisX recognition that lead to 

the production of IL-10 producing macrophages (Domínguez-Soto et al., 2011; Nonaka et 

al., 2008; van Gisbergen et al., 2005).

Induction of transplantation mediated by DC-SIGN+-suppressive macrophages depends on 

simultaneous TLR4 signaling. DC-SIGN signaling crosstalk with TLR4 has been 

demonstrated to mediate IL-10 production (Geijtenbeek et al., 2003; Gringhuis et al., 2007; 

Gringhuis et al., 2014). Here we report that DC-SIGN+ macrophages from TLR4-deficient 
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heart recipients produce significantly less IL-10 and do not exhibit suppressive function. 

Consistent with these results, a recent study indicates that during peripheral tolerance, DC-

SIGN and TLR4 are required for IL-10 secretion and decreased T cell proliferation in mixed 

leukocyte reactions possibly caused by an increased frequency of Treg cell, which is 

associated with a high fucosyltransferase expression (García-Vallejo et al., 2014). In 

transplantation, while absence of absence of innate MyD88 signaling prevents acute 

allograft rejection and promotes inducible allograft acceptance (Goldstein et al., 2003; 

Walker et al., 2006), it is possible that specific signaling molecules of the MyD88 pathway, 

such as TRL4, might have a critical role in the induction of tolerance mediated by 

suppressive myeloid cells. In this respect, the TLR4 agonist HMGB1, which is upregulated 

during tissue damage associated with ischemia reperfusion (Wu et al., 2007) and surgical 

transplantation (Huang et al., 2007), has been recently demonstrated to enhance the immune-

suppressive capacity of myeloid-derived suppressor cells through the production of IL-10 

(Parker et al., 2014).

In conclusion, we demonstrate that graft-infiltrating DC-SIGN+-suppressive macrophages 

mediate the induction of transplantation tolerance, revealing a previously unknown function 

of mouse DC-SIGN. Our delineation of a specific cell-surface phenotype for 

immunoregulatory, graft-protective suppressive macrophages in transplantation, as well as 

the mechanistic insights underlying the requirements for their differentiation in vivo, have 

important implications for understanding and potentially manipulating pathogenic immune 

responses. The C-type lectin DC-SIGN (CD209a) has a critical function in the induction of 

transplantation tolerance as demonstrated by its absence or in vivo blockade and might be 

used as phenotypic marker to define immune regulatory macrophages. The data provide a 

framework for developing CSF1-based in vitro protocols to induce therapeutic macrophages 

for clinical use to prevent transplant rejection and suggest that depleting or blocking 

suppressive macrophage development by targeting CSF1, which upregulates the expression 

of DC-SIGN, could be exploited to enhance anti-tumor immunity.

EXPERIMENTAL PROCEDURES

Mice

BALB/c, C57BL/6, C57BL/6-Foxp3tm1Flv/J, B6.129P2-Cd40tm1Kik/J, and B6.B10ScN-

Tlr4lps-del/JthJ mice 8 weeks of age were purchased from The Jackson Laboratory. DC-

SIGN-deficient mice (DC-Sign-KO, B6 [FVB]-Cd209atm1.1Cfg/Mmcd) were from the 

Mutant Mouse Regional Resource Centers, Consortium for Functional Glycomics (Scripps 

Res. Institute). The alpha(1,3)fucosyltransferases FucT-IV and FucT-VII double-deficient 

mice were from John Lowe (University of Michigan). The C57BL/6-Tg (Csf1r-EGFP-

NGFR/FKBP1A/TNFRSF6) 2Bck/J MaFIA mice from D. Cohen (University of Kentucky) 

(Burnett et al., 2004). The C57BL/6 CD169DTR mice have been previously described 

(Miyake et al., 2007). All experiments were performed with age- and sex-matched mice in 

accordance with Institutional Animal Care and Utilization Committee-approved protocols.
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Vascularized Heart Transplantation

BALB/c hearts were transplanted as fully vascularized heterotopic grafts into C57BL/6 mice 

as previously described (Corry et al., 1973). Recipient mice were treated with 250 μg anti-

CD40L mAb (clone MR1, BioXcell) for tolerance induction on days 0, 2, and 4 as 

previously described (Jiang et al., 2011). Graft function was monitored every other day by 

abdominal palpation. Untreated control mice received hamster IgG in PBS. Rejection was 

defined as complete cessation of a palpable beat and confirmed by direct visualization at 

laparotomy.

In Vivo Cell Depletion

For depletion of CD169 expressing CD11b+CSF1R+Ly6CloLy6G− regulatory macrophages 

heterozygous CD169-DTR recipients were injected intraperitoneally (i.p.) with 10 ng/g body 

weight of DT (Sigma-Aldrich) 24, 48, and 72 hr after transplantation (Miyake et al., 2007). 

Ly6G+ cell depletion was induced with anti-Ly6G mAb clone 1A8 (BioXcell) injected at 0.5 

mg i.p. on days –3, –2, and –1 relative to transplantation as previously described (Daley et 

al., 2008; Garcia et al., 2010).

Antibody-Mediated In Vivo Treatment

Agonistic anti-CD40 mAb (clone FGK4.5 mAb) was produced by BioXcell. CD40-

mediated priming independent of CD40L was achieved by intravenous (i.v.) injection of 100 

μg of agonistic anti-CD40 mAb on days 0 and +1 relative to transplantation (Gorbachev and 

Fairchild, 2004). Blocking antibody to IFN-γ (Clone R4-6A2) was produced by BioXcell. 

Anti-IFN-γ mAb was injected at 500 μg on days 0 and +1 relative to transplantation. 

Blocking antibody to CSF1 (clone 5A1) (Lokeshwar and Lin, 1988) and CSF1R (clone 

AFS98) (Sudo et al., 1995) were produced by BioXcell. Anti-CSF1 mAb was injected at 150 

μg i.p. on days −1, +1, +2, +3, and +4 relative to transplantation, which is known to 

neutralize the biological functions of CSF1 in vivo (Gregory et al., 1992). Anti-CSF1R mAb 

was injected at 2 mg/mouse on day −5 and 0.5 mg/mouse on days −4 and −3, which is 

known to neutralize the biological functions of CSF1R in vivo (Hashimoto et al., 2011). 

Blocking antibody to DC-SIGN (CD209a) (Cheong et al., 2010) was mAb was purified from 

culture supernatant, grown in a CELLine Flask (BD) in serum-free medium (PFHM-II; 

Invitrogen) and injected at 250 μg i.p. on days +1, +2, +3, and +4 relative to transplantation.

Mouse Suppression Assay

Spleens of C57BL/6 or C57BL/6-Foxp3tm1Flv/J (H-2b) mice were gently dissociated into 

single-cell suspensions, and red blood cells were removed using hypotonic ACK lysis 

buffer. Splenocytes were either stained with anti-CD4 mAb, or labeled with CFSE at 5 μM 

concentration (Molecular probes - In-vitrogen) followed by staining with anti-CD8 mAb for 

30 min on ice. Responder FoxP3+CD4+ and CFSE+CD8+ T cells were sorted using FACS 

Aria II (BD Biosciences) with a purity > 98%. Spleens of BALB/c (H-2d) mice were gently 

dissociated into single-cell suspensions and were enriched for CD11c+ cells using the 

EasySep Mouse CD11c Positive Selection Kit (StemCell). Enriched CD11c+ splenocytes 

were stained with anti-mouse CD11c mAb and sorted using FACS Aria II (BD Biosciences) 

and were used together with anti-CD3 plus CD28 mAb (1 μg/ml) as stimulators. Stimulated 
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FoxP3+CD4+ or CFSE+CD8+ T cells were cultures with graft infiltrating 

CD11b+CSF1R+Ly6ChiLy6G−, CD11b+CSF1R+Ly6CloLy6G−, and 

CD11b+CSF1R+Ly6CintLy6G+ myeloid cells for 4 days at 37°C in a 5% CO2 incubator. T 

cell proliferation was measured by flow cytometric analysis of CFSE dilution on CD8+ T 

cells. Treg expansion was measured by flow cytometric analysis of Foxp3-RFP on CD4+ T 

cells.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• DC-SIGN+ macrophages inhibit CD8+ T cell proliferation and expand 

CD4+Foxp3+ Treg

• In vivo development of DC-SIGN+ macrophages is regulated by IFN-γ and 

CSF1

• IL-10 is essential for DC-SIGN+ macrophage-mediated suppression

• Simultaneous Fucose-DC-SIGN and HMGB1-TLR4 signaling is required for 

IL-10 production
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Figure 1. Suppressive Macrophages Accumulate during Tolerance Induction
(A) Graft survival of control IgG mAb (rejecting) and anti-CD40L mAb (tolerized) 

recipients of heterotopic cardiac allografts (n = 20 mice/group). The shaded area depicts 

heart allografts that were harvested at day 5 post-transplantation for subsequent analyses.

(B) Representative and quantitative flow cytometry results for Ly6C and Ly6G expression 

in CD45+CD11b+ CSF1RGFP myeloid cell subsets from the allografts of tolerized and 

rejecting recipients at day 5 post-transplantation. Results represent mean ± SEM (n = 8 mice 

per group).
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(C) In vitro suppressive capacity of each myeloid subset for CD8+ T cells. Proliferation was 

measured by CSFE dilution after 96 hr by flow cytometry. Percentage of cell proliferation is 

presented as mean ± SEM of five independent experiments.

(D) In vitro Treg expansion of each myeloid subset. Flow cytometric analysis indicates 

Foxp3 expression on CD4 T cells after co-culture for 96 hr with myeloid subsets. Percentage 

of Treg expansion is presented as mean ± SEM of five independent experiments.
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Figure 2. Suppressive Macrophages Are Required for Tolerance Induction
(A) Heatmap derived from microarray data of selected myeloid markers that achieve p < 

0.05 in myeloid subsets from the allografts of tolerized recipients at day 5 post-

transplantation (means of n = 3 per group). Representative flow cytometry plots of the above 

myeloid markers on each myeloid subset. Data is representative of three independent 

experiments.

(B) Representative and quantitative flow cytometry results of recipient myeloid cell subsets 

in the allografts of tolerized CSF1RGFP (wild-type) and CSF1RGFP CD169DTR recipients at 
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day 5 post-transplantation. Results represent mean ± SEM (n = 12 mice per group of 3 

independent experiments).

(C and D) Representative and quantitative flow cytometry results depicting percentages (C) 

and surface memory/naive CD44/CD62L phenotypes (D) of graft infiltrating CD8 T cells 

after CD169+ macrophage depletion. Results represent mean ± SEM (n = 12 mice per group 

of 3 independent experiments).

(E) Representative flow cytometry results depicting percentages of Foxp3 expressing graft 

infiltrating CD4+ T cells on day 21 post-transplantation in tolerized recipients with or 

without CD169+ macrophage depletion. Results represent mean ± SEM (n = 4 mice per 

group of 3 independent experiments).

(F) Effects of CD169+ macrophage depletion on in vivo T cell proliferation. CFSE-labeled 

CD8+ T cells (5 × 106) were injected into tolerized CSF1RGFP and CSF1RGFP CD169DTR 

recipients. Proliferation was measured in the allograft by CSFE dilution after 120 hr by flow 

cytometry. Results represent mean ± SEM (n = 4 mice per group of 3 independent 

experiments).

(G) Effects of CD169+ macrophage depletion on graft survival in tolerized CSF1RGFP and 

CSF1RGFP CD169DTR recipients (n = 12 mice/group).
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Figure 3. CD40L Blockade Inhibits Accumulation of Immunogenic Macrophages
(A) Representative and quantitative flow cytometry results of recipient myeloid cell subsets 

in the allografts of tolerized WT recipients with or without co-treatment with agonistic 

CD40 mAb. Results represent mean ± SEM (n = 4 mice per group of 3 independent 

experiments).

(B) IFN-γ expression in cardiac allografts. Cardiac allografts were harvested 5 days after 

transplantation from each group. Agonistic anti-CD40 mAb was injected at 100 μg/mouse 

on days 0 and +1 relative to transplantation. Recombinant mouse IFN-γ was injected at 4 × 

105 units/day for 10 days (n = 4 mice/group). Supernatants of single cell suspensions were 

analyzed for IFN-γ measured by ELISA. Bar graphs represent mean ± SEM of three 

independent experiments (**p < 0.01).

(C) Representative and quantitative flow cytometry results of recipient myeloid cell subsets 

in the allografts of tolerized CD40 deficient recipients with or without agonistic CD40 mAb 

treatment. Results represent mean ± SEM (n = 4 mice per group of 3 independent 

experiments).

(D) Effects of CD40 ligation on graft survival in tolerized WT and CD40 deficient recipients 

(n = 8 mice/group).

(E) Representative and quantitative flow cytometry results of recipient myeloid cell subsets 

in the allografts of tolerized WT recipients with or without recombinant IFN-γ treatment (4 

× 105 units/day for 5 days). Results represent mean ± SEM (n = 4 mice per group of 3 

independent experiments).
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(F) Effects of recombinant IFN-γ on graft survival in tolerized WT recipients (n = 8 mice/

group).

(G) Representative and quantitative flow cytometry results of recipient myeloid cell subsets 

in the allografts of tolerized WT recipients co-treated with agonistic CD40 mAb with or 

without anti-IFN-γ mAb treatment. Results represent mean ± SEM (n = 4 mice per group of 

3 independent experiments).

(H) Effects of partial IFN-γ blockade on graft survival in tolerized wild-type recipients co 

treated with agonistic CD40 mAb (n = 8 mice/group).
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Figure 4. CSF1 Mediates the Development of Suppressive Macrophages
(A) CSF1 expression in cardiac allografts. Cardiac allografts were harvested 5 days after 

transplantation from tolerized and rejecting recipients. Total single cell suspensions were 

analyzed for CSF1 measured by real-time PCR. Bar graphs represent mean ± SEM of three 

independent experiments (**p < 0.01).

(B) Representative and quantitative flow cytometry results of recipient myeloid cell subsets 

in the allografts of tolerized WT recipients co-treated with anti-CSF1 mAb. Results 

represent mean ± SEM (n = 4 mice per group of 3 independent experiments).

(C) Representative and quantitative flow cytometry results of Foxp3 expression on CD4 T 

cells in the allografts of tolerized recipients on day 21 post-transplantation following anti-
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CSF1 mAb treatment. Results represent mean ± SEM (n = 4 mice per group of 3 

independent experiments).

(D) Effects of CSF1 and CSF1R blockade on graft survival in tolerized WT recipients (n = 

12 mice/group).

(E) Representative and quantitative flow cytometry results of adoptively transferred 

CSF1R+Ly6Chi bone marrow cells into recipient mice treated with anti-CD40L mAb ± anti-

CSF1 mAb 5 days after transplantation. Results represent mean ± SEM (n = 3 mice per 

group of 3 independent experiments).

(F) Representative and quantitative flow cytometry results of in vitro cultured Ly6Chi bone 

marrow cells with either recombinant CSF1 or IFNγ for 96 hr. Results represent mean ± 

SEM of three independent experiments.

(G) Suppressive function of Ly6Chi bone marrow cells after CSF1 or IFN-γ in vitro 

treatment. Results represent mean ± SEM of three independent experiments.
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Figure 5. DC-SIGN Controls the Function of Suppressive Macrophages
(A and B) Heatmap derived from microarray data (A) and flow cytometry expression (B) of 

DC-SIGN in myeloid subsets from the allografts of tolerized and rejecting recipients at day 

5 post-transplantation (means of n = 3 per group). Flow cytometry plots are representative of 

three independent experiments.

(C) Quantitative immunofluorescent analysis of tolerized and rejecting allografts at day 5 

post-transplantation. Bar graphs represent frequency of DCSIGN+ cells expressed as 

percentage of a total of 1,000 DAPI nucleated cells from the allografts of tolerized and 
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rejecting mice. Results represent mean ± SEM of 10 tissue sections from 4 cardiac allografts 

per group (**p < 0.01).

(D) Effects of DC-SIGN blockade and DC-SIGN deficiency on graft survival in tolerized 

WT recipients (n = 12 mice/group).

(E) Representative and quantitative flow cytometry results of recipient myeloid cell subsets 

in the allografts of tolerized WT recipients co-treated with anti-DC-SIGN mAb. Results 

represent mean ± SEM (n = 4 mice per group of 3 independent experiments).

(F) Representative and quantitative flow cytometry results of in vitro suppressive capacity 

and Treg expansion of Ly6Clo macrophages from tolerized recipients co-treated with anti-

DC-SIGN. Results represent mean ± SEM (n = 4 mice per group of 3 independent 

experiments).

(G) Suppressive function of Ly6Clo macrophages from tolerized recipients after in vitro 

treatment with anti-DC-SIGN mAb. Results represent mean ± SEM of three independent 

experiments.
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Figure 6. Fucosylated DC-SIGN Ligands Are Required for Macrophage Mediated Suppression
(A) Quantitative immunofluorescent analysis of tolerized and rejecting allografts at day 5 

post-transplantation. Bar graphs represent frequency of Lewis X+ cells expressed as 

percentage of a total of 1,000 DAPI nucleated cells from tolerized mice receiving WT and 

fucosyltranferase (Fut) IV and VII double-deficient donor allografts. Results represent mean 

± SEM of ten tissue sections from four cardiac allografts per group (**p < 0.01).

(B) Effects of LewisX deficiency on graft survival in tolerized WT recipients (n = 12 mice/

group).
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(C) Representative and quantitative flow cytometry results of recipient myeloid cell subsets 

in tolerized mice type receiving WT and FucT IV-VII dKO donor allografts. Results 

represent mean ± SEM (n = 4 mice per group of 3 independent experiments).

(D) Representative and quantitative flow cytometry results of in vitro suppressive capacity 

and Treg expansion of Ly6Clo macrophages from the allografts of tolerized mice receiving 

WT and FucT IV-VII dKO donor allografts. Results represent mean ± SEM (n = 4 mice per 

group of 3 independent experiments). (E) Effects of Lacto-N-fucopentaose III (LNFPIII) on 

graft survival in tolerized wild-type recipients (n = 8 mice/group).

(F) Representative and quantitative flow cytometry results of in vitro suppressive capacity 

and Treg expansion of Ly6Clo macrophages from the allografts of tolerized mice receiving 

WT and FucT IV-VII dKO donor allografts following administration of LNFPIII. Results 

represent mean ± SEM (n = 4 mice per group of 3 independent experiments).
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Figure 7. IL-10 Is Essential for DC-SIGN Mediated Suppression
(A) IL-10 expression in cardiac allografts and Ly6Clo macrophages. Cardiac allografts from 

WT untreated, WT tolerized, and DC-SIGN KO tolerized recipients were harvested 5 days 

after transplantation. Total single cell suspensions and Ly6Clo cells were analyzed for IL-10 

measured by real-time PCR. Bar graphs represent mean ± SEM of three independent 

experiments (**p < 0.01).

(B) Representative and quantitative flow cytometry results of in vitro suppressive capacity 

and Treg expansion of Ly6Clo macrophages from the allografts of tolerized IL-10 deficient 

recipient mice. Results represent mean ± SEM (n = 4 mice per group of 3 independent 

experiments).
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(C) Representative and quantitative flow cytometry results of in vitro suppressive capacity 

and Treg expansion of Ly6Clo macrophages from the allografts of tolerized DC-SIGN 

deficient recipient mice receiving in vitro IL-10 stimulation for 72 hr at 10 ng/ml. Results 

represent mean ± SEM (n = 4 mice per group of 3 independent experiments).

(D) IL-10 expression in cardiac allografts. Cardiac allografts from tolerized WT and TLR4 

KO recipients were harvested 5 days after transplantation. Total single cell suspensions were 

analyzed for IL-10 measured by real-time PCR. Bar graphs represent mean ± SEM of three 

independent experiments (**p < 0.01). (E) Representative and quantitative flow cytometry 

results of in vitro suppressive capacity and Treg expansion of Ly6Clo macrophages from the 

allografts of tolerized TLR4 deficient recipient mice. Results represent mean ± SEM (n = 4 

mice per group of 3 independent experiments).

(F) IL-10 expression in stimulated bone marrow cells from WT, DC-SIGN-deficient, and 

TLR4-deficient mice. Bone marrow cells were stimulated with LewisX (10 μg/ml) and 

recombinant HMGB1 (10 μg/ml) for 72 hr in vitro stimulation (control group non-

stimulated). Supernatants of single cell suspensions were analyzed for IL-10 measured by 

ELISA. Results represent mean ± SEM of three independent experiments (**p < 0.01).

(G) Representative and quantitative flow cytometry results for in vitro suppressive capacity 

of human monocytes cultured with CSF1 plus IL-4. Results represent mean ± SEM of three 

independent experiments (*p < 0.05, **p < 0.01).
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