1,516 research outputs found

    The Balanced Scorecard to Measure Information Technology Performance

    Get PDF
    The Balanced Scorecard (BS) is a powerful framework to assess Information Technology (IT) performance. The BS is useful because it uses multiple perspectives and distinguishes between outcomes (effects) and drivers (causes). This study is divided into two stages. The first stage uses a case study methodology to explore the use of the BS within different organizations. The second stage uses a quantitative approach to test the relationship between drivers and outcomes. This study will contribute to the understanding of assessing the performance of the IT function. Results will suggest different drivers depending on the strategic role of the IT function within an organization

    Modeling the kinematics of multi-axial composite laminates as a stacking of 2D TIF plies

    Get PDF
    Thermoplastic composites are widely considered in structural parts. In this paper attention is paid to sheet forming of continuous fiber laminates. In the case of unidirectional prepregs, the ply constitutive equation is modeled as a transversally isotropic fluid, that must satisfy both the fiber inextensibility as well as the fluid incompressibility. When the stacking sequence involves plies with different orientations the kinematics of each ply during the laminate deformation varies significantly through the composite thickness. In our former works we considered two different approaches when simulating the squeeze flow induced by the laminate compression, the first based on a penalty formulation and the second one based on the use of Lagrange multipliers. In the present work we propose an alternative approach that consists in modeling each ply involved in the laminate as a transversally isotropic fluid – TIF - that becomes 2D as soon as incompressibility constraint and plane stress assumption are taken into account. Thus, composites laminates can be analyzed as a stacking of 2D TIF models that could eventually interact by using adequate friction laws at the inter-ply interfaces.Peer ReviewedPostprint (published version

    Deim-based pgd for multi-parametric nonlinear model reduction

    Get PDF
    A new technique for efficiently solving parametric nonlinear reduced order models in the Proper Generalized Decomposition (PGD) framework is presented here. This technique is based on the Discrete Empirical Interpolation Method (DEIM)[1], and thus the nonlinear term is interpolated using the reduced basis instead of being fully evaluated. The DEIM has already been demonstrated to provide satisfactory results in terms of computational complexity decrease when combined with the Proper Orthogonal Decomposition (POD). However, in the POD case the reduced basis is a posteriori known as it comes from several pre-computed snapshots. On the contrary, the PGD is an a priori model reduction method. This makes the DEIM-PGD coupling rather delicate, because different choices are possible as it is analyzed in this work

    A Location Aware Mobile Tool for Direct and Indirect Climate Data Sensors

    Get PDF
    Access to GIS data from mobile platforms continues to be a challenge and there is a wide range of fields where it is extremely useful. In this work, we combined three key aspects: climate data sensors, mobile platforms and spatial proximity operations. We published and made use of a web 2.0 network of climate data, where content is user-collected, by means of their meteorological stations, and exposed as available information for the virtual community. Moreover, we enriched this data by giving the users the opportunity to directly inform the system with different climate measures. In general, management of this type of information from a mobile application could result in an important decision tool, as it enables us to provide climate-related data according to a context and a geographical location. Therefore, we implemented a native mobile application for iPhone and iPad platforms by using ArcGIS SDK for iOS and by integrating a series of ArcGIS webmaps, which allows us to perform geospatial queries based on the user's location, offering, at the same time, access to all the data provided by the climate data sensor network and from direct users

    Revisiting the Redox Transitions of Polyaniline. Semiquantitative Interpretation of Electrochemically Induced IR Bands

    Get PDF
    The redox transitions of PANI in acidic medium have been monitored by a combination of cyclic voltammetry, in situ conductance and in situ FTIR spectroscopy. The results of the semiquantitative analysis strongly suggest that the classical tetrameric model of PANI does not satisfactorily describe the actual structures of the polymer at different redox states. An octameric model is revisited, with the inclusion of essential resonant structures, to provide an appropriate prediction of the relative IR intensity changes of the aromatic C-C stretching (at around 1520 cm-1) and the quinoid C=C stretching (at around 1590 cm-1) vibrations observed by FTIR, which are difficult to interpret by considering only 4 aniline rings. Particularly, it is found that the emeraldine state is better described as a resonance hybrid of the classical bipolaronic and semiquinoid (polaron lattice) structures, while most of the charge transferred at the onset of the second voltammetric peak comes from the additional oxidation of this hybrid, which becomes unstable in the electrochemical environment producing mineralization to CO2 and release of soluble quinones.This work was financed by the Spanish Ministerio de Ciencia e Innovación (project PID2019-105923RB-I00) and by Generalitat Valenciana (Conselleria de Educación, Investigación, Cultura y Deporte through project PROMETEO/2018/087)

    Proper generalized decomposition solutions within a domain decomposition strategy

    Get PDF
    Domain decomposition strategies and proper generalized decomposition are efficiently combined to obtain a fast evaluation of the solution approximation in parameterized elliptic problems with complex geometries. The classical difficulties associated to the combination of layered domains with arbitrarily oriented midsurfaces, which may require in‐plane–out‐of‐plane techniques, are now dismissed. More generally, solutions on large domains can now be confronted within a domain decomposition approach. This is done with a reduced cost in the offline phase because the proper generalized decomposition gives an explicit description of the solution in each subdomain in terms of the solution at the interface. Thus, the evaluation of the approximation in each subdomain is a simple function evaluation given the interface values (and the other problem parameters). The interface solution can be characterized by any a priori user‐defined approximation. Here, for illustration purposes, hierarchical polynomials are used. The repetitiveness of the subdomains is exploited to reduce drastically the offline computational effort. The online phase requires solving a nonlinear problem to determine all the interface solutions. However, this problem only has degrees of freedom on the interfaces and the Jacobian matrix is explicitly determined. Obviously, other parameters characterizing the solution (material constants, external loads, and geometry) can also be incorporated in the explicit description of the solution

    Regulation of specialists and generalists by neural variability improves pattern recognition performance

    Full text link
    This is the author’s version of a work that was accepted for publication in Neurocomputing. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Neurocomputing, VOL 151, Part 1, (2015), DOI 10.1016/j.neucom.2014.09.073To analyze the impact of neural threshold variability in the mushroom body (MB) for pattern recognition, we used a computational model based on the olfactory system of insects. This model is a single-hidden-layer neural network (SLN) where the input layer represents the antennal lobe (AL). The remaining layers are in the MBs that are formed by the Kenyon cell (KC) layer and the output neurons that are responsible for odor learning. The binary code obtained for each odorant in the output layer by unsupervised learning was used to measure the classification error. This classification error allows us to identify the neural variability paradigm that achieves a better odor classification. The neural variability is provided by the neural threshold of activation. We compare two hypotheses: a unique threshold for all the neurons in the MB layer, which leads to no variability (homogeneity), and different thresholds for each MB layer (heterogeneity). The results show that, when there is threshold variability, odor classification performance improves. Neural variability induces populations of neurons that are specialists and generalists. Specialist neurons respond to fewer stimulus than the generalists. The proper combination of these two neuron types leads to performance improvement in the bioinspired classifier.This work was supported by the Spanish Government project TIN2010-19607 and predoctoral research grant BES-2011- 049274. R.H. acknowledges partial support by NIDCDR01DC011422- 01

    Revisiting the redox transitions of Polyaniline. Semiquantitative interpretation of electrochemically induced IR bands

    Full text link
    [EN] The redox transitions of PANI in acidic medium have been monitored by a combination of cyclic voltammetry, in situ conductance and in situ FTIR spectroscopy. The results of the semiquantitative analysis strongly suggest that the classical tetrameric model of PANI does not satisfactorily describe the actual structures of the polymer at different redox states. An octameric model is revisited, with the inclusion of essential resonant structures, to provide an appropriate prediction of the relative IR intensity changes of the aromatic Csingle bondC stretching (at around 1520 cm¿1) and the quinoid Cdouble bondC stretching (at around 1590 cm¿1) vibrations observed by FTIR, which are difficult to interpret by considering only 4 aniline rings. Particularly, it is found that the emeraldine state is better described as a resonance hybrid of the classical bipolaronic and semiquinoid (polaron lattice) structures, while most of the charge transferred at the onset of the second voltammetric peak comes from the additional oxidation of this hybrid, which becomes unstable in the electrochemical environment producing mineralization to CO2 and release of soluble quinones.This work was financed by the Spanish Ministerio de Ciencia e Innovacion (project PID2019-105923RB-I00) and by Generalitat Valenciana (Conselleria de Educacion, Investigacion, Cultura y Deporte through project PROMETEO/2018/087). The authors of this work are deeply grateful to Prof. Jose Luis Vazquez Pico (Pepe, nowadays retired) for his mentorship, which was the seed to develop this work. We appreciate the wise advice he gave us during our careers which served us to deepen the science contained in this article, as well as for the friendship with which he honored us over the years.Huerta, F.; Quijada, C.; Montilla, F.; Morallón, E. (2021). Revisiting the redox transitions of Polyaniline. Semiquantitative interpretation of electrochemically induced IR bands. Journal of Electroanalytical Chemistry. 897:1-11. https://doi.org/10.1016/j.jelechem.2021.115593S11189
    corecore