31 research outputs found

    Nuevas citas de Mauremys leprosa y Trachemys scripta en la provincia de Málaga

    Get PDF
    Este trabajo ha sido parcialmente financiado por el proyecto CGL2009-11316 y por una beca de Formación de Profesorado Universitario del Ministerio de educación AP2007-03633.Peer reviewe

    Modelling Favourability for Invasive Species Encroachment to Identify Areas of Native Species Vulnerability

    Get PDF
    We assessed the vulnerability of the native Mediterranean pond turtle to encroachment by the invasive red-eared slider in southern Spain. We first obtained an ecogeographical favourability model for the Mediterranean pond turtle. We then modelled the presence/absence of the red-eared slider in the Mediterranean pond turtle range and obtained an encroachment favourability model. We also obtained a favourability model for the red-eared slider using the ecogeographical favourability for the Mediterranean pond turtle as a predictor. When favourability for the Mediterranean pond turtle was high, favourability for the red-eared slider was low, suggesting that in these areas the Mediterranean pond turtle may resist encroachment by the red-eared slider. We also calculated favourability overlap between the two species, which is their simultaneous favourability. Grids with low overlap had higher favourability values for the Mediterranean pond turtle and, consequently, were of lesser conservation concern. A few grids had high values for both species, being potentially suitable for coexistence. Grids with intermediate overlap had similar intermediate favourability values for both species and were therefore areas where the Mediterranean pond turtle was more vulnerable to encroachment by the red-eared slider. We mapped the favourability overlap to provide a map of vulnerability of the Mediterranean pond turtle to encroachment by the red-eared slider

    Thermal Niche Evolution in Liolaemus and Iberian Lizards

    Get PDF
    Los cambios ambientales han moldeado en gran medida los patrones de diversidad biológica. En el contexto actual de rápidos cambios ambientales y climáticos se hace necesario predecir cómo reaccionarán las especies a estas presiones. Las especies han evolucionado en ambientes cambiantes y continúan haciéndolo. Sin embargo, la velocidad a la que cambia el clima en estos momentos es mucho más elevada a la de cambios climáticos anteriores a la revolución industrial. Debido a ello, se suele asumir que las especies no tendrán mucho tiempo para adaptarse, por lo que sus nichos permanecerán estables. No obstante, hay ejemplos de cambios rápidos del nicho e incluso de adaptaciones evolutivas durante breves periodos de tiempo, porque lo que esa asunción necesita ser testada. Los objetivos de esta tesis doctoral son determinar hasta qué punto está conservada la ecofisiología térmica a través de la filogenia e intentar evaluar la capacidad de adaptación de los organismos al incremento de temperatura. Para ello he utilizado un grupo altamente diverso de lagartos iguánidos de Sudamérica como modelo de estudio, en el que he medido rasgos térmicos ecofisiológicos y para los que construimos una filogenia molecular calibrada con el tiempo. Además, he utilizado catorce especies de lacértidos ibéricos, para explorar la posibilidad de utilizar temperaturas fisiológicas modelizadas matemáticamente como predictores en modelos bioclimáticos. En el Capítulo 1 analicé las tolerancias térmicas de gran número de organismos terrestres y encontré que las tolerancias al calor están muy conservadas, mientras que las tolerancias al frío varían de forma notable, siendo este patrón consistente para ectotermos, endotermos y plantas. Discuto que esta asimetría hace que el componente térmico del nicho fundamental se superponga entre muchas más especies de lo esperado. Además, en consecuencia, los nichos estimados para especies adaptadas al frío podrían infraestimar los límites térmicos superiores y potencialmente exagerar los riesgos del cambio climático. Por otra parte, es improbable que las especies que se encuentran próximas a sus límites térmicos superiores incrementen su tolerancia al calor. El Capítulo 2 se enfoca en los lagartos del género Liolaemus. Aquí, construyo una filogenia calibrada con el tiempo y analizo los patrones de diversificación del género respecto a la historia cimática y geológica. El origen de la diversificación del grupo se establece más atrás en el tiempo que estimaciones previas, lo que cuestiona la hipótesis de la vicarianza andina como motor de la diversificación. El patrón general de diversificación sugiere la creación gradual de nuevos nichos. Además, se ha detectado que este grupo muestra distintos patrones de diversificación a ambos lados de la cordillera de los Andes, y que la diversificación del grupo argentino (subgénero Eulaemus) se relaciona con el cambio de temperatura global. En el Capítulo 3, incorporo los rasgos térmicos fisiológicos a los análisis filogenéticos y estimo la velocidad a la que han ido cambiando en el tiempo. Los resultados muestran que para asimilar el rápido incremento actual de temperatura, los rasgos tendrían que evolucionar cuatro o cinco órdenes de magnitud más rápido que las tasas más rápidas observadas. Los análisis comparativos filogenéticos muestran que los rasgos térmicos de los lagartos del género Liolaemus están conservados más allá de lo esperado en exclusiva por movimiento Browniano y que las preferencias térmicas y las temperaturas medidas en campo muestran más inercia filogenética que los límites térmicos. Todos estos resultados hacen improbable que la adaptación evolutiva de los rasgos térmicos fisiológicos pueda jugar un papel significativo en su respuesta al cambio climático. Además, exploro la posibilidad de emplear métodos compartivos para estimar rasgos que no se han medido en algunas especies a través del grado de parentesco filogenético. Finalmente en el Capítulo 4 se ha testado la afirmación de que los modelos bioclimáticos deberían ajustarte con variables directas. Utilizo un modelo climático dinámico (dynamic climate downscaling) de la península ibérica para calcular temperaturas operativas y usarlas, junto a la temperatura del aire, para crear modelos bioclimáticos de catorce especies de lacértidos. Mis resultados indican que la robustez del modelo es similar cuando se usa temperatura operativa o temperatura del aire y que las tendencias de ambas variables durante la segunda mitad del siglo XX no difieren de forma significativa. Por tanto, mi estudio demuestra que el uso de variables directas no siempre mejora la calidad del modelo

    Lizards could be warming faster than climate

    No full text
    Global annual mean temperatures increased 0.74∞C in the second half of the 20th century and projections are for even greater increases in the 21st century (Solomon et al. 2007). But how do such increases in air temperature affect species on the ground? Studies examining climate change effects on species distributions investigate the relationship between the distributions of species and atmospheric variables, such as air temperature. The projections of altered species distributions are then made assuming that the effects of climate change on species are proportional to changes in the variables used for modelling (Araújo et al. 2006). But even with ectotherms – that regulate their body temperature from external heat sources – changes in body temperature are not expected to equal changes in air temperature. We measure differences in air temperature and expected body temperature (operative temperature) of a non-thermoregulating ectotherm with the convective and radiative properties of a lizard across the Iberian Peninsula, Supplementary material Appendix 1. Mean operative temperatures were calculated for every 5-yr interval between 1956–2010, using wellknown biophysical equations (Bakken and Gates 1975) and outputs from a new Regional Climate Model (RCM). The RCM was dynamically downscaled at 5 5 km resolution with hourly climate estimates across the entire period of time considered (Prasad Dasari et al. 2014). Expected operative temperatures were then compared with air temperatures. The latest climatic numerical downscalings for Europe have a maximum horizontal resolution of 25 km (Haylock et al. 2008, Kendon et al. 2010) or 12 km (Jacob et al. 2014). The RCM downscaling used in this study has a horizontal resolution of 5 km (Prasad Dasari et al. 2014) making it, to our knowledge, the highest resolution available for the Iberian Peninsula and Europe. This spatial resolution is similar to that of previous studies modelling the relationship between reptiles and climate and operative temperatures (Kearney and Porter 2004, Buckley 2010).This study is partly funded through the NICHE project (CGL2011-26852) of the Spanish Ministry of Economy and Competitiveness and the Integrated Program of IC&DT Call No 1/SAESCTN/ALENT-07-0224-FEDER-001755. FF-Y was also funded through a CSIC-JAE PhD studentship (2010 00735).Peer reviewe

    Liolaemus patriciaiturrae Navarro and Núñez, 1993 (Squamata: Liolaemidae): distribution extension in northern Chile and geographic distribution map

    Get PDF
    We report two new records for Liolaemus patriciaiturrae in Chile, one corresponding to specimens previously misidentified as L. nigriceps. We also provide a map showing all the known locations of the species

    Modelling favourability for invasive species encroachment to identify areas of native species vulnerability

    Get PDF
    We assessed the vulnerability of the native Mediterranean pond turtle to encroachment by the invasive red-eared slider in southern Spain. We first obtained an ecogeographical favourability model for the Mediterranean pond turtle. We then modelled the presence/absence of the red-eared slider in the Mediterranean pond turtle range and obtained an encroachment favourability model. We also obtained a favourability model for the red-eared slider using the ecogeographical favourability for the Mediterranean pond turtle as a predictor. When favourability for the Mediterranean pond turtle was high, favourability for the red-eared slider was low, suggesting that in these areas the Mediterranean pond turtle may resist encroachment by the red-eared slider. We also calculated favourability overlap between the two species, which is their simultaneous favourability. Grids with low overlap had higher favourability values for the Mediterranean pond turtle and, consequently, were of lesser conservation concern. A few grids had high values for both species, being potentially suitable for coexistence. Grids with intermediate overlap had similar intermediate favourability values for both species and were therefore areas where the Mediterranean pond turtle was more vulnerable to encroachment by the red-eared slider. We mapped the favourability overlap to provide a map of vulnerability of the Mediterranean pond turtle to encroachment by the red-eared slider.This study was supported by the project CGL2009-11316 (Ministerio de Ciencia e Innovación, Spain, and FEDER)Peer reviewe

    Heat freezes niche evolution

    Get PDF
    Climate change is altering phenology and distributions of many species and further changes are projected. Can species physiologically adapt to climate warming? We analyse thermal tolerances of a large number of terrestrial ectotherm (n = 697), endotherm (n = 227) and plant (n = 1816) species worldwide, and show that tolerance to heat is largely conserved across lineages, while tolerance to cold varies between and within species. This pattern, previously documented for ectotherms, is apparent for this group and for endotherms and plants, challenging the longstanding view that physiological tolerances of species change continuously across climatic gradients. An alternative view is proposed in which the thermal component of climatic niches would overlap across species more than expected. We argue that hard physiological boundaries exist that constrain evolution of tolerances of terrestrial organisms to high temperatures. In contrast, evolution of tolerances to cold should be more frequent. One consequence of conservatism of upper thermal tolerances is that estimated niches for cold-adapted species will tend to underestimate their upper thermal limits, thereby potentially inflating assessments of risk from climate change. In contrast, species whose climatic preferences are close to their upper thermal limits will unlikely evolve physiological tolerances to increased heat, thereby being predictably more affected by warming. © 2013 The Authors.This study is funded through the LINCGlobal CSIC-PUC and the NICHE project (CGL2011-26852) of the Spanish Ministry of Economy and Competitiveness. P.F.Y. is funded through a CSIC-JAE PhD studentship (2010 00735).Peer Reviewe

    Thermal tolerances in rodents: Species that evolved in cold climates exhibit a wider thermoneutral zone

    No full text
    © 2014 Francisco Bozinovic. Background: Thermal constraints are often invoked to explain animal distributions. Maximum temperatures are less variable in different biomes around the globe than are minimum temperatures. Considerable information is available for mammals about basal metabolic rate and thermal conductance. Aims: Evaluate the correlation of lower critical temperature (TLC), upper critical temperature (TUC) or TNZ breadth (TUC - TLC TNZb) with three ambient temperatures in rodent species. Hypotheses: TLC, TUC and TNZb should be adjusted by selective processes to the ambient temperature that is most usually experienced by mammal species. TNZb should be greater in species inhabiting colder habitats. Methods: We used TLC, TUC data from published studies of 85 species of rodents. We determined the average annual mean, minimum and maximum temperatures across the distribution of each species. Then, using standard least squares regression with body mass as a covariate, we determined the statistical relationships between the physiological variables and the temperatures. We evaluated the effect of phylogeny using a Bayesian Phylogenetic Mixed Model in addition to Bayesian Model Averaging. Results: Ambient temperatures correlate positively with TLC and TUC, and negatively with TNZb. Species that evolved in cold climates exhibited a greater mass-independent TNZb than species from warmer climates. Species that evolved in cold climates exhibited lower TLC and TUC than species from warmer climates. Phylogenetic as well as conventional statistics indicated that there are thermoregulatory constraints across geographic gradients.Peer Reviewe
    corecore