29,270 research outputs found

    Charmonium properties in hot quenched lattice QCD

    Full text link
    We study the properties of charmonium states at finite temperature in quenched QCD on large and fine isotropic lattices. We perform a detailed analysis of charmonium correlation and spectral functions both below and above TcT_c. Our analysis suggests that both S wave states (J/ψJ/\psi and ηc\eta_c) and P wave states (χc0\chi_{c0} and χc1\chi_{c1}) disappear already at about 1.5Tc1.5 T_c. The charm diffusion coefficient is estimated through the Kubo formula and found to be compatible with zero below TcT_c and approximately 1/πT1/\pi T at 1.5Tc≲T≲3Tc1.5 T_c\lesssim T\lesssim 3 T_c.Comment: 32 pages, 19 figures, typo corrected, discussions on isotropic vs anisotropic lattices expanded, published versio

    A non-perturbative estimate of the heavy quark momentum diffusion coefficient

    Get PDF
    We estimate the momentum diffusion coefficient of a heavy quark within a pure SU(3) plasma at a temperature of about 1.5Tc. Large-scale Monte Carlo simulations on a series of lattices extending up to 192^3*48 permit us to carry out a continuum extrapolation of the so-called colour-electric imaginary-time correlator. The extrapolated correlator is analyzed with the help of theoretically motivated models for the corresponding spectral function. Evidence for a non-zero transport coefficient is found and, incorporating systematic uncertainties reflecting model assumptions, we obtain kappa = (1.8 - 3.4)T^3. This implies that the "drag coefficient", characterizing the time scale at which heavy quarks adjust to hydrodynamic flow, is (1.8 - 3.4) (Tc/T)^2 (M/1.5GeV) fm/c, where M is the heavy quark kinetic mass. The results apply to bottom and, with somewhat larger systematic uncertainties, to charm quarks.Comment: 18 pages. v2: clarifications adde

    Vector screening masses in the quark-gluon plasma and their physical significance

    Full text link
    Static and non-static thermal screening states that couple to the conserved vector current are investigated in the high-temperature phase of QCD. Their masses and couplings to the current are determined at weak coupling, as well as using two-flavor lattice QCD simulations. A consistent picture emerges from the comparison, providing evidence that non-static Matsubara modes can indeed be treated perturbatively. We elaborate on the physical significance of the screening masses.Comment: 4 pages, 3 figures. Submitted as a contribution to the proceedings of the Quark Matter 2014 conference (talk given by H. Meyer

    Critical point and scale setting in SU(3) plasma: An update

    Get PDF
    We explore a method developed in statistical physics which has been argued to have exponentially small finite-volume effects, in order to determine the critical temperature Tc of pure SU(3) gauge theory close to the continuum limit. The method allows us to estimate the critical coupling betac of the Wilson action for temporal extents up to Nt ~ 20 with < 0.1% uncertainties. Making use of the scale setting parameters r0 and sqrt{t0} in the same range of beta-values, these results lead to the independent continuum extrapolations Tc r0 = 0.7457(45) and Tc sqrt{t0} = 0.2489(14), with the latter originating from a more convincing fit. Inserting a conversion of r0 from literature (unfortunately with much larger errors) yields Tc / LambdaMSbar = 1.24(10).Comment: 12 pages. v2: clarifications and references added, published versio

    Deformation mechanics of deep surface flaw cracks

    Get PDF
    A combined analytical and experimental program was conducted to determine the deformation characteristics of deep surface cracks in Mode I loading. An approximate plane finite element analysis was performed to make a parameter study on the influence of crack depth, crack geometry, and stress level on plastic zones, crack opening displacement, and back surface dimpling in Fe-3Si steel and 2219-T87 aluminum. Surface replication and profiling techniques were used to examine back surface dimple configurations in 2219-T87 aluminum. Interferometry and holography were used to evaluate the potential of various optical techniques to detect small surface dimples on large surface areas

    Young people's attitudes to religious diversity : quantitative approaches from social psychology and empirical theology

    Get PDF
    This essay discusses the design of the quantitative component of the ‘Young People’s Attitudes to Religious Diversity’ project, conceived by Professor Robert Jackson within the Warwick Religions and Education Research Unit, and presents some preliminary findings from the data. The quantitative component followed and built on the qualitative component within a mixed method design. The argument is advanced in seven steps: introducing the major sources of theory on which the quantitative approach builds from the psychology of religion and from empirical theology; locating the empirical traditions of research among young people that have shaped the study; clarifying the notions and levels of measurement employed in the study anticipating the potential for various forms of data analysis; discussing some of the established measures incorporated in the survey; defining the ways in which the sample was structured to reflect the four nations of the UK, and London; illustrating the potential within largely descriptive cross-tabulation forms of analysis; and illustrating the potential within more sophisticated multivariate analytic models

    A relation between screening masses and real-time rates

    Get PDF
    Thermal screening masses related to the conserved vector current are determined for the case that the current carries a non-zero Matsubara frequency, both in a weak-coupling approach and through lattice QCD. We point out that such screening masses are sensitive to the same infrared physics as light-cone real-time rates. In particular, on the perturbative side, the inhomogeneous Schrodinger equation determining screening correlators is shown to have the same general form as the equation implementing LPM resummation for the soft-dilepton and photon production rates from a hot QCD plasma. The static potential appearing in the equation is identical to that whose soft part has been determined up to NLO and on the lattice in the context of jet quenching. Numerical results based on this potential suggest that screening masses overshoot the free results (multiples of 2piT) more strongly than at zero Matsubara frequency. Four-dimensional lattice simulations in two-flavour QCD at temperatures of 250 and 340 MeV confirm the non-static screening masses at the 10% level. Overall our results lend support to studies of jet quenching based on the same potential at T > 250 MeV.Comment: 32 pages. v2: clarifications added, typos corrected; published versio

    Narrow Band Gap Semiconductors as Acoustic Phonon Transducers

    Get PDF
    It \u27s actually with some considerable apprehension that I address this audience. I will try to alleviate my apprehension somewhat by telling you right at the outset that I do not have a single data slide showing a detected flaw. What\u27s more I have to confess, I have never detected a flaw. I sincerely hope you\u27ll forgive me for this. My apprehension is heightened by my observation over the last several days that there is very little interest in ultrasonic work at the frequencies that are of interest to me, the range of about 1 to 10 GHz. I don\u27t think I\u27ve heard anything over 1 GHz mentioned. Perhaps it\u27s becoming apparent to most of you that I am not principally in nondestructive evaluation. What I am interested in is lattice dynamics; more specifically relaxation effects in dielectric solids
    • …
    corecore