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We explore a method developed in statistical physics which has been argued to have exponentially small
finite-volume effects, in order to determine the critical temperature Tc of pure SU(3) gauge theory close to
the continuum limit. The method allows us to estimate the critical coupling βc of the Wilson action for
temporal extents up toNτ ∼ 20with≲0.1% uncertainties. Making use of the scale setting parameters r0 andffiffiffiffi
t0

p
in the same range of β-values, these results lead to the independent continuum extrapolations Tcr0 ¼

0.7457ð45Þ and Tc
ffiffiffiffi
t0

p ¼ 0.2489ð14Þ, with the latter originating from a more convincing fit. Inserting a
conversion of r0 from literature (unfortunately with much larger errors) yields Tc=ΛMS ¼ 1.24ð10Þ.
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I. INTRODUCTION

Even though light quarks play an essential role for the
phenomenological understanding of heavy ion collision
experiments, it can be argued that, due to their large
multiplicity in the initial state and their Bose-enhanced
distribution functions in the plasma phase, gluons are the
single most important degree of freedom influencing the
formation and evolution of QCD matter. Gluons are also
much easier to study with nonperturbative lattice methods
than light quarks. Therefore, studies of pure SU(3) gauge
theory at high temperature continue to constitute an important
laboratory system, both for developing numerical techniques
and for gaining physics understanding on observables for
which a high precision is needed. Recent examples of topics
studied include scale setting, renormalization, and methods
for statistical error reduction (cf. e.g. Refs. [1–5]). Our own
interest stems from attempts to measure real-time observables
such as transport coefficients [6–8], in which case theoreti-
cally well-founded methods [9] can probably be applied (if at
all) only after the infinite volume and continuum limits have
been reached with a high precision [10].
In the present contribution, we use the pure SU(3) gauge

theory as a test bench for studying finite-volume scaling in
the vicinity of a first-order phase transition. Concretely, our
primary goal is to determine the critical coupling βc for
values of Nτ much larger than have been achieved before
[here Nτ ≡ 1=ðaTÞ is the number of lattice points in the
periodic imaginary-time direction, a is the lattice spacing,
and T is the temperature]. Let us remark that values of βc as a
function of Nτ have attracted recent interest as tests of
semianalytic models [11,12], and indeed new high-precision

values at large Nτ put the functional dependences predicted
by these frameworks under tension [7].
The second focus point of our study is that of scale

setting [13]. In particular, we consider two scales that have
been frequently employed, denoted by r0 [14] and

ffiffiffiffi
t0

p
[15]. Neither of these scales has a direct physics inter-
pretation; however, they are relatively straightforward to
measure and can in principle be related to physical
quantities in a separate study. On the other hand, in the
thermal context, there is one directly physical quantity, the
critical temperature Tc, which would have certain advan-
tages as a scale setting parameter, permitting for instance
for an easy comparison of theories with different matter
contents but with similar macroscopic properties (this
assumes, of course, that all theories considered have a
sharply defined transition point). Therefore, we make use
of our results in order to obtain a largely independent
estimate for Tcr0 [16] and a new estimate for Tc

ffiffiffiffi
t0

p
.

It should be acknowledged, however, that close to the
continuum limit we also see indications of growing
systematic uncertainties, particularly in the case of r0.
The plan of this paper is the following. After introducing

and testing the basic method of our study in Sec. II, we
employ it in order to estimate the critical coupling βc as a
function of Nτ in Sec. III. The issue of scale setting is
addressed in Sec. IV, and we conclude in Sec. V.

II. METHOD

The Wilson plaquette action,

SW ≡ β

6

X
x;μ;ν

Trð1 − PμνÞ; ð1Þ
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studied on an Nτ × N3
s lattice with periodic boundary

conditions in all directions, has a global Z(3) symmetry
that is broken at and above the transition point for Ns → ∞.
We denote the location of the transition point by βc.
Theoretical arguments [17] and empirical evidence [18]
suggest that this is a first-order phase transition.
It has been shown through a study of q-state Potts

models in three dimensions [19,20] that, even though most
observables, such as susceptibilities, show powerlike finite-
volume effects at a first-order transition point, there is a
particular definition of a pseudocritical point for which
finite-volume effects are exponentially suppressed. This is
obtained if the “weights” of the phases with no degeneracy
(wc) and with q-fold degeneracy (wd) are related through

qwc ¼ wd: ð2Þ

The weight can be defined through the “volume” of the
distribution of some observable which has a good overlap
with the order parameter. More formally, the weight
corresponds to the partition function associated with the
phase considered.
For SU(3), a suitable observable is the Polyakov loop

expectation value. Carrying out measurements in the
vicinity of βc, we define

sðβÞ≡ 3wc − wd

3wc þ wd
: ð3Þ

By construction sðβÞ equals þ1 deep in the confined phase
and −1 deep in the deconfined phase. The critical point is
obtained by interpolating to the location where sðβcÞ ¼ 0.
To implement the idea, we need to introduce a criterion

for separating a distribution into contributions from differ-
ent phases. In a finite volume, when the distributions
overlap, the procedure is not unique. In this study, we
define a separatrix by looking for a minimum in the
distribution of ReP, where P denotes the Polyakov loop

[cf. Fig. 1 (left)]. This minimum is employed for defining a
triangle separating the two phases [cf. Fig. 1 (middle)].
The resulting weights are the inputs for Eq. (3); βc is
obtained by a linear interpolation from points on both sides
of the zero [cf. Fig. 1 (right)].
The results obtained with this procedure are shown in

Fig. 2 for Nτ ¼ 4. They have been normalized to a classic
value from Ref. [18] and are compared with recent high-
precision pseudocritical points extracted from Polyakov
loop susceptibility maxima [21]. We conclude that for
Ns > 3Nτ no finite-volume effects can be observed within
our resolution (∼0.005%). For Ns < 3Nτ, we expect βc to
be slightly underestimated.
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FIG. 1 (color online). Left: Determination of the rightmost minimum (open circle) from the distribution of ReP. Middle:
The corresponding triangle separating the two phases, with the vertical line placed at the position of the open circle. Right:
The resulting function sðβÞ [cf. Eq. (3)], permitting for an estimate of βc from the crossing of zero. The statistics of each data point is
Oð105Þ sweeps; statistical errors are based on jackknife estimates.
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FIG. 2 (color online). The pseudocritical couplings extracted
from our method at Nτ ¼ 4 (closed circles), normalized to the
central value of the infinite-volume estimate βc ¼ 5.69254ð24Þ
from Ref. [18]. We also compare with susceptibility maxima from
Ref. [21] (open squares). The gray band illustrates our infinite-
volume extrapolation (constant fit to Ns=Nτ > 3).
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III. RESULTS AT FINITE LATTICE SPACING

We carried out measurements for 4 ≤ Nτ ≤ 22, increasing
Nτ in steps of 2. We computed on several volumes for
ensembles with Nτ ≤ 18, verifying that volume dependence
is below statistical uncertainties. Subsequently we fit the
data at Ns > 3Nτ to a constant. Given the resources at our
disposal, we used a single spatial extent Ns ¼ 64 for
Nτ ¼ 20, 22. Here, minor finite-volume effects start to
contaminate our results. However, based on Fig. 2, we
expect the effects from a simulation with Ns=Nτ ¼ 64=22 ¼
2.9 to be below the 0.01% level, thereby being much
below statistical errors. In contrast, at the smallest Nτ where
statistical errors are extremely small, we have artificially
saturated the errors at a constant value ∼0.005%, correspond-
ing to the expected uncertainty from finite-volume effects.
Our final results at fixed Nτ, together with previous estimates
from the literature, are collected in Table I.

IV. CONTINUUM EXTRAPOLATIONS

In this section we convert the lattice-specific numbers
of Table I to values of Tc in physical units. To achieve this
two different scale setting parameters are considered, r0
and

ffiffiffiffi
t0

p
, with the latter leading to a noticeably better

description of the thermal data (cf. Sec. IV B).

A. Scale r0
The scale r0=a [14] has been measured as a function of β

in Refs. [24,25] (see Ref. [26] and references therein for
previous work). We complement these results by a new set
of simulations, with parameter values and results listed in
Table II. The measurements were separated by 500 heat
bath over-relaxation updates. A number of standard tech-
niques for statistical error reduction [27–29] were imple-
mented in order to obtain these results. The static potential
was extracted from Wilson loops with an ansatz based on
two exponentials. The distance appearing in the static

potential was tree-level improved [25], and subsequently
a B-spline interpolation was carried out in order to extract
r0=a from its definition [14]. (Note that, due to the several
steps involved, measurements are costly, and systematic
errors are difficult to get fully under control, particularly at
large β.)
To permit for a subsequent interpolation, our data and

older values [24,25] are fit in the range β ∈ ð5.7; 6.92Þ to a
rational ansatz inspired by Ref. [30],

ln

�
r0
a

�
¼
�

β

12b0
þ b1
2b20

ln

�
6b0
β

��
1þc1=βþc2=β2

1þc3=βþc4=β2
; ð4Þ

TABLE I. The infinite-volume critical points of SU(3) gauge theory according to various studies. Ntotal indicates
the total numbers of configurations (all volumes and values of β). Our data are based on constant fits to Ns > 3Nτ

whenever several volumes are available. For Nτ ¼ 4, 6 we have artificially enlarged the errors to account for
systematics related to exponentially small volume corrections (cf. the text).

Nτ βc [18,22] βc [21] βc [23] βc [our value] Ns used Ntotal

4 5.69254(24) 5.692469(42) � � � 5.69275(28) 14,…,40 83 × 106

5 � � � � � � 5.8000(5) � � � � � � � � �
6 5.8941(5) 5.89410(11) � � � 5.89425(29) 20,…,40 28 × 106

8 6.0624(10) 6.06212(44) � � � 6.06239(38) 28, 32 4.2 × 106

10 � � � � � � � � � 6.20873(47) 32,…,56 15 × 106

12 6.3380(17) � � � � � � 6.33514(45) 40,…,72 21 × 106

14 � � � � � � � � � 6.4473(18) 48, 56 12 × 106

16 � � � � � � � � � 6.5457(40) 64 2.5 × 106

18 � � � � � � � � � 6.6331(20) 56, 64 3.6 × 106

20 � � � � � � � � � 6.7132(26) 64 4.0 × 106

22 � � � � � � � � � 6.7986(65) 64 5.9 × 106

TABLE II. The results for r0=a that have been used in our
analysis. For β ¼ 6.3 only the largest volume (indicated with an
asterisk) has been included in subsequent fits. The values from
Ref. [25], marked with a double asterisk, do not come directly
from r0 but rather another scale rc, which has been converted into
r0 through a continuum relation, of which the systematic
uncertainties are included in the errors.

β r0=a [24] r0=a [25]
r0=a

[our value] Nτ × N3
s Nconf

5.7 2.922(9) � � � � � � � � � � � �
5.8 3.673(5) � � � � � � � � � � � �
5.95 4.898(12) � � � � � � � � � � � �
6.07 6.033(17) � � � � � � � � � � � �
6.2 7.380(26) � � � � � � � � � � � �
6.3 � � � � � � 8.52(4) 32 × 323 216
6.3 � � � � � � 8.51(2) 32 × 483 211
6.3 � � � � � � 8.52ð2Þ⋆ 32 × 643 202
6.336 � � � � � � 8.95(3) 64 × 323 220
6.4 � � � � � � 9.80(3) 36 × 363 206
6.5 � � � � � � 11.16(2) 44 × 443 202
6.57 � � � 12.18ð10Þ⋆⋆ � � � � � � � � �
6.69 � � � 14.20ð12Þ⋆⋆ � � � � � � � � �
6.81 � � � 16.54ð12Þ⋆⋆ � � � � � � � � �
6.92 � � � 19.13ð15Þ⋆⋆ � � � � � � � � �
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where b0 ≡ 11=ð4πÞ2 and b1 ≡ 102=ð4πÞ4. The fit param-
eters obtained read1

c1 ¼ −8.17273; c2 ¼ 14.9600; c3 ¼ −3.95983;

c4 ¼ −5.30334; χ2=d:o:f: ¼ 0.7: ð5Þ
Based on the above equation, we convert the results
in Table I to values of r0Tc: r0Tc ¼ ðr0=aÞðβcÞ=Nτ.
Subsequently we perform the extrapolation ða=r0Þ2 → 0

using a fit quadratic in ða=r0Þ2, illustrated in Fig. 3 (left),
with the result

r0Tc ¼ 0.7457ð45Þ; χ2=d:o:f: ¼ 6.7: ð6Þ
The error includes a rough estimate of systematic effects,
encompassing the central values obtained by replacing
the representation in Eq. (4) through lnðr0=aÞ ¼P

3
n¼0 anðβ − 6.25Þn, by carrying out the continuum

extrapolation with a cubic fit, and by omitting βc corre-
sponding to Nτ ¼ 4. The first method increases the central
value (Tcr0 ≃ 0.7496), and the second and third decrease
it (Tcr0 ≃ 0.7412, 0.7424, respectively). However, in the
first case, the quality of the continuum fit decreases further
from the already poor one in Eq. (6), whereas in the second
case, the scatter of the data in Fig. 3 (left) suggests that
including too much freedom in the fit distorts the outcome.
A possible reason for the poor description of the data close
to the continuum limit could be that estimates of r0=a at
β > 6.4 are systematically on the low side (by ∼Oð1%Þ),
but unfortunately we have not been able to confirm this
suspicion.
The result in Eq. (6) can be compared with r0Tc ≃

0.7470ð7Þ obtained in Ref. [7] based on peak positions of

Polyakov loop susceptibilities (here only statistical errors
were included),2 as well as with the earlier value r0Tc ¼
0.7498ð50Þ [16].
Finally, we recall that e.g. the values r0ΛMS ¼ 0.586ð48Þ

[25], r0ΛMS ¼ 0.602ð48Þ [31], r0ΛMS ¼ 0.614ð6Þ [32], and
r0ΛMS ¼ 0.637ð32Þ [33] can be found in the literature (the
third relies on the applicability of tadpole-improved lattice
perturbation theory and the fourth of continuum perturbation
theory at hadronic scales). Using the second value yields
Tc=ΛMS ¼ 1.24ð10Þ. Unfortunately the error is dominated
by that in the relation of r0 and ΛMS, so our new result in
Eq. (6) does not help to improve on previous estimates.

B. Scale
ffiffiffiffi
t0

p

The scale
ffiffiffiffi
t0

p
is defined through the time that it takes for

Wilson flow to adjust a chosen observable (≡E) to a
predefined value [15]. We measured t0 for a number of
β≃ βc, as listed in Table I. To study possible systematic
effects, we made use of three different implementations of
E, based on the standard plaquette, tree-level improved, and
clover discretizations, all of which are available within the
DD-HMC package [34]. Like for r0, the measurements
were separated by 500 heat bath over-relaxation updates;
the volumes and the numbers of configurations used for
measurements are shown in Table III.
Given that the β values of Table I correspond to the

critical point, a set of fixed physical volumes can be chosen
by scaling the corresponding Nτ by a constant amount.
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FIG. 3 (color online). Left: Continuum extrapolation of Tcr0, based on the data in Table I and the interpolation from Eq. (5). Right:
Analogous results for Tc

ffiffiffiffi
t0

p
from the Wilson (open circles) and Wilson tree-level improved (closed circles) discretizations, interpolated

according to Eq. (7).

1For the sake of reproducibility of subsequent results, we show
more digits than are statistically significant.

2For fixed Nτ the results of Ref. [7] are consistent with the
present ones; however, their uncertainties from finite-volume
effects are larger, and only values up to Nτ ¼ 16 could be
reached. Therefore, systematic errors would be larger than in the
present study (but are more difficult to estimate reliably).
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Setting Ns ¼ 4Nτ we ensure that the box size is
L ¼ 4=Tc ≃ 5.3r0. For the smallest β, we have carried
out test simulations also at larger volumes, finding con-
sistent results apart from the “clover” discretization for
which volume dependence on the 3% level is visible. For
our final results, we quote only those obtained with the two
variants of the “Wilson” discretization that did not exhibit
any volume dependence within statistical precision.
Nevertheless systematic errors do grow with β, because
a longer integration trajectory in t is needed and because
autocorrelation times tend to grow.
As before, we represent the data as in Eq. (4) for the

interpolation, only this time replacing r0 →
ffiffiffiffi
t0

p
. The result-

ing parameters are (for the Wilson imp. discretization)3

c1 ¼ −10.2116; c2 ¼ 25.6819; c3 ¼ −5.64462;

c4 ¼ 2.26845; χ2=d:o:f: ¼ 2.3: ð7Þ
With this interpolation the critical values in Table I can be
converted into Tc

ffiffiffiffi
t0

p
; results are shown in Fig. 3 (right). A fit

quadratic in a2=t0 yields

Tc
ffiffiffiffi
t0

p ¼ 0.2489ð14Þ; χ2=d:o:f: ¼ 1.5: ð8Þ
The error bar here includes a rough estimate of systematic
effects, encompassing the central values obtained by
(i) replacing Wilson imp. by Wilson or even the formerly
excluded clover data, (ii) replacing the representation in
Eq. (4) through lnð ffiffiffiffi

t0
p

=aÞ ¼ P
3
n¼0 anðβ − 6.25Þn, (iii) car-

rying out the continuum extrapolation with a cubic fit,
and (iv) omitting βc corresponding to Nτ ¼ 4 from the fit.
The biggest deviations (Tc

ffiffiffiffi
t0

p ≃ 0.250) result either from
using clover data which we assume to suffer from finite-
volume effects or from method (ii) which leads to χ2 larger
by more than an order of magnitude in Eq. (8). (An analysis

based on data for t0=a2 from previous literature can be found
in Ref. [8] is, however, subject to noticeably larger finite-
volume effects than our current determination.)
Comparing Eq. (8) with Eq. (6), we extract

ffiffiffiffi
t0

p
=r0 ¼

0.3338ð28Þ, in perfect agreement with
ffiffiffiffi
t0

p
=r0 ¼

0.3343ð21Þ from Refs. [15,35]. It is comforting to find a
good agreement from a largely independent analysis.

V. CONCLUSIONS

In this paper we have demonstrated that, with modern
resources and an opportune choice of an observable, the
critical coupling βc of the Wilson plaquette action can be
determined with ≲0.1% errors up to Nτ ∼ 20 (cf. Table I).
Subsequently, the critical temperature Tc of pure SU(3)
gauge theory could serve as a valid scale setting parameter
for values of the Wilson coupling in the range 5.7≲ β ≲ 6.8
(cf. Table I, from which the lattice spacing a is obtained as
a ¼ 1=ðNτTcÞ if we simulate at the βc corresponding toNτ).
Unfortunately these values are not large enough for scale
setting on the very fine lattices (for instance Nτ ¼ 48,
β≃ 7.8) that are being used for studying transport observ-
ables close to the continuum limit [6–8]. Therefore “theo-
retical” quantities like r0 and

ffiffiffiffi
t0

p
continue to be needed as

intermediate steps. On this point our study suggests that, with
comparable numerical effort, employing

ffiffiffiffi
t0

p
may yield more

stable results than r0; however, being assured that systematic
errors are below the percent level remains a challenge for
β > 6.4. If

ffiffiffiffi
t0

p
is indeed used for scale setting, a conversion to

Tc can be carried out through Eq. (8):
ffiffiffiffi
t0

p
Tc ¼ 0.2489ð14Þ.

For various comparisons of lattice data with continuum
perturbation theory, it would be very welcome to improve
on our knowledge of

ffiffiffiffi
t0

p
ΛMS, of which the uncertainty is

currently an order of magnitude larger than that of
ffiffiffiffi
t0

p
Tc.

4

TABLE III. Our results for t0=a2. The β-values correspond approximately to those in Table I (apart from Nτ ¼ 18,
22), withNτ scaled up by a factor 4 in each case. For β ¼ 5.6923 only the largest volume (indicated with an asterisk)
has been included in subsequent fits.

β ðt0=a2ÞWilson ðt0=a2ÞWilson imp: ðt0=a2ÞClover Nτ × N3
s Nconf

5.6923 0.6109(10) 0.8234(9) 1.0124(11) 16 × 163 455
5.6923 0.6103(7) 0.8229(6) 1.0119(7) 16 × 243 313
5.6923 0.6095(5) 0.8220(5) 1.0104(6) 16 × 323 248
5.6923 0.6010(4) 0.8226(4) 0.9905(4) 24 × 323 233
5.6923⋆ 0.6097(3) 0.8223(3) 0.9800(4) 32 × 323 221
5.8941 1.9520(22) 2.0989(22) 2.2889(24) 24 × 243 465
6.0625 3.7129(39) 3.8507(39) 4.0626(41) 32 × 323 673
6.2083 5.9521(65) 6.0873(66) 6.3284(68) 40 × 403 476
6.3352 8.668(11) 8.802(11) 9.076(12) 48 × 483 315
6.4487 11.958(18) 12.091(18) 12.397(18) 56 × 563 254
6.5509 15.769(23) 15.901(23) 16.240(24) 64 × 643 305
6.7130 24.222(35) 24.355(35) 24.752(36) 80 × 803 250

3For the sake of reproducibility of subsequent results, we show
more digits than are statistically significant.

4After the appearance of the eprint version of our paper, a
study appeared in which a possible strategy for this task was
suggested [36].
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Another issue worth further consideration is whether the
method of Sec. II, which relied on the breaking of a discrete
symmetry, could be generalized to the case of a continuous
symmetry (such as a chiral symmetry).
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