89 research outputs found

    Coherent 100G Nonlinear Compensation with Single-Step Digital Backpropagation

    Full text link
    Enhanced-SSFM digital backpropagation (DBP) is experimentally demonstrated and compared to conventional DBP. A 112 Gb/s PM-QPSK signal is transmitted over a 3200 km dispersion-unmanaged link. The intradyne coherent receiver includes single-step digital backpropagation based on the enhanced-SSFM algorithm. In comparison, conventional DBP requires twenty steps to achieve the same performance. An analysis of the computational complexity and structure of the two algorithms reveals that the overall complexity and power consumption of DBP are reduced by a factor of 16 with respect to a conventional implementation, while the computation time is reduced by a factor of 20. As a result, the proposed algorithm enables a practical and effective implementation of DBP in real-time optical receivers, with only a moderate increase of the computational complexity, power consumption, and latency with respect to a simple feed-forward equalizer for dispersion compensation.Comment: This work has been presented at Optical Networks Design & Modeling (ONDM) 2015, Pisa, Italy, May 11-14, 201

    Optical Time-Frequency Packing: Principles, Design, Implementation, and Experimental Demonstration

    Full text link
    Time-frequency packing (TFP) transmission provides the highest achievable spectral efficiency with a constrained symbol alphabet and detector complexity. In this work, the application of the TFP technique to fiber-optic systems is investigated and experimentally demonstrated. The main theoretical aspects, design guidelines, and implementation issues are discussed, focusing on those aspects which are peculiar to TFP systems. In particular, adaptive compensation of propagation impairments, matched filtering, and maximum a posteriori probability detection are obtained by a combination of a butterfly equalizer and four 8-state parallel Bahl-Cocke-Jelinek-Raviv (BCJR) detectors. A novel algorithm that ensures adaptive equalization, channel estimation, and a proper distribution of tasks between the equalizer and BCJR detectors is proposed. A set of irregular low-density parity-check codes with different rates is designed to operate at low error rates and approach the spectral efficiency limit achievable by TFP at different signal-to-noise ratios. An experimental demonstration of the designed system is finally provided with five dual-polarization QPSK-modulated optical carriers, densely packed in a 100 GHz bandwidth, employing a recirculating loop to test the performance of the system at different transmission distances.Comment: This paper has been accepted for publication in the IEEE/OSA Journal of Lightwave Technolog

    Photonic Combinatorial Network for Contention Management in 160 Gb/s Interconnection Networks based on All-Optical 2x2 Switching Elements

    Get PDF
    A modular photonic interconnection network based on a combination of basic 2×2 all-optical nodes including a photonic combinatorial network for the packet contention management is presented. The proposed architecture is synchronous, can handle optical time division multiplexed (OTDM) packets up to 160 Gb/s, exhibits self-routing capability, and very low switching latency. In such a scenario, OTDM has to be preferred to wavelength division multiplexing (WDM) because in the former case, the instantaneous packet power carries the information related to only one bit, making the signal processing based on instantaneous nonlinear interactions between packets and control signals more efficient. Moreover, OTDM can be used in interconnection networks without caring about the propagation impairments because of the very short length (< 100 m) of the links in these networks. For such short-range networks, the packet synchronization can be solved at the network boundary in the electronic domain without the need of complex optical synchronizers. In this paper, we focus on a photonic combinatorial network able to detect the contentions, and to optically drive the contention resolution block and the switching control block. The implementation of the photonic combinatorial network is based on semiconductor devices, which makes the solution very promising in terms of compactness, stability, and power consumption. This implementation represents the first example of complex photonic combinatorial network for ultrafast digital processing. The network performance has been investigated for bit streams at 10 Gb/s in terms of bit error rate (BER) and contrast ratio. Moreover, the suitability of the 2×2 photonic node architecture exploiting the earlier mentioned combinatorial network has been verified at a bit rate up to 160 Gb/s. In this way, the potential of photonic digital processing for the next generation broad band and flexible interconnection networks has been demonstrated

    <研究>一般均衡理論の統一的理解に就て

    Get PDF
    Nonlinearity mitigation based on the enhanced split-step Fourier method (ESSFM) for the implementation of low-complexity digital backpropagation (DBP) is investigated and experimentally demonstrated. After reviewing the main computational aspects of DBP and of the conventional split-step Fourier method (SSFM), the ESSFM for dual-polarization signals is introduced. Computational complexity, latency, and power consumption of DBP based on the SSFM and ESSFM algorithms are estimated and compared. Effective low-complexity nonlinearity mitigation in a 112 Gb/s polarization-multiplexed QPSK system is experimentally demonstrated by using a single-step DBP based on the ESSFM. The proposed DBP implementation requires only a single step of the ESSFM algorithm to achieve a transmission distance of 3200km over a dispersion-unmanaged link. In comparison, a conventional DBP implementation requires 20 steps of the SSFM algorithm to achieve the same performance. An analysis of the computational complexity and structure of the two algorithms reveals that the overall complexity and power consumption of DBP are reduced by a factor of 16 with respect to a conventional implementation, while the computation time is reduced by a factor of 20. Similar complexity reductions can be obtained at longer distances if higher error probabilities are acceptable. The results indicate that the proposed algorithm enables a practical and effective implementation of DBP in real-time optical receivers, with only a moderate increase in the computational complexity, power consumption, and latency with respect to a simple feed-forward equalizer for bulk dispersion compensation

    Identification of Sclerostin as a Putative New Myokine Involved in the Muscle-to-Bone Crosstalk

    Get PDF
    Bone and muscle have been recognized as endocrine organs since they produce and secrete “hormone-like factors” that can mutually influence each other and other tissues, giving rise to a “bone–muscle crosstalk”. In our study, we made use of myogenic (C2C12 cells) and osteogenic (2T3 cells) cell lines to investigate the effects of muscle cell-produced factors on the maturation process of osteoblasts. We found that the myogenic medium has inhibitory effects on bone cell differentiation and we identified sclerostin as one of the myokines produced by muscle cells. Sclerostin is a secreted glycoprotein reportedly expressed by bone/cartilage cells and is considered a negative regulator of bone growth due to its role as an antagonist of the Wnt/β-catenin pathway. Given the inhibitory role of sclerostin in bone, we analyzed its expression by muscle cells and how it affects bone formation and homeostasis. Firstly, we characterized and quantified sclerostin synthesis by a myoblast cell line (C2C12) and by murine primary muscle cells by Western blotting, real-time PCR, immunofluorescence, and ELISA assay. Next, we investigated in vivo production of sclerostin in distinct muscle groups with different metabolic and mechanical loading characteristics. This analysis was done in mice of different ages (6 weeks, 5 and 18 months after birth) and revealed that sclerostin expression is dynamically modulated in a muscle-specific way during the lifespan. Finally, we transiently expressed sclerostin in the hind limb muscles of young mice (2 weeks of age) via in vivo electro-transfer of a plasmid containing the SOST gene in order to investigate the effects of muscle-specific overproduction of the protein. Our data disclosed an inhibitory role of the muscular sclerostin on the bones adjacent to the electroporated muscles. This observation suggests that sclerostin released by skeletal muscle might synergistically interact with osseous sclerostin and potentiate negative regulation of osteogenesis possibly by acting in a paracrine/local fashion. Our data point out a role for muscle as a new source of sclerostin.Bone and muscle have been recognized as endocrine organs since they produce and secrete “hormone-like factors” that can mutually influence each other and other tissues, giving rise to a “bone–muscle crosstalk”. In our study, we made use of myogenic (C2C12 cells) and osteogenic (2T3 cells) cell lines to investigate the effects of muscle cell-produced factors on the maturation process of osteoblasts. We found that the myogenic medium has inhibitory effects on bone cell differentiation and we identified sclerostin as one of the myokines produced by muscle cells. Sclerostin is a secreted glycoprotein reportedly expressed by bone/cartilage cells and is considered a negative regulator of bone growth due to its role as an antagonist of the Wnt/β-catenin pathway. Given the inhibitory role of sclerostin in bone, we analyzed its expression by muscle cells and how it affects bone formation and homeostasis. Firstly, we characterized and quantified sclerostin synthesis by a myoblast cell line (C2C12) and by murine primary muscle cells by Western blotting, real-time PCR, immunofluorescence, and ELISA assay. Next, we investigated in vivo production of sclerostin in distinct muscle groups with different metabolic and mechanical loading characteristics. This analysis was done in mice of different ages (6 weeks, 5 and 18 months after birth) and revealed that sclerostin expression is dynamically modulated in a muscle-specific way during the lifespan. Finally, we transiently expressed sclerostin in the hind limb muscles of young mice (2 weeks of age) via in vivo electro-transfer of a plasmid containing the SOST gene in order to investigate the effects of muscle-specific overproduction of the protein. Our data disclosed an inhibitory role of the muscular sclerostin on the bones adjacent to the electroporated muscles. This observation suggests that sclerostin released by skeletal muscle might synergistically interact with osseous sclerostin and potentiate negative regulation of osteogenesis possibly by acting in a paracrine/local fashion. Our data point out a role for muscle as a new source of sclerostin

    Profession, Professionalität, Professionalisierung

    Get PDF
    Alignment of LH receptor amino acid sequences obtained from the UniProt database ( http://www.uniprot.org ). Homo sapiens LHCGR (UniProt identifier: P22888), Mus musculus Lhr (P30730) and Rattus norvegicus Lhr (P16235) sequences were aligned by the UniProt online tool Clustal Omega 1.2.1 ( http://www.uniprot.org/align ). Boxes indicate sequence divergence; :=conservation of strong groups;. = conservation of weak groups or no consensus. (DOC 92 kb

    Pharmacological approaches to modulate reverse cholesterol transport

    No full text
    Il trasporto inverso del colesterolo (RCT) è la principale via metabolica attraverso cui l’organismo può eliminare il colesterolo in eccesso. Potenziare l’RCT potrebbe essere il sistema più efficace per ridurre l’accumulo di colesterolo nei tessuti periferici e, quindi, il rischio di eventi cardiovascolari avversi su base aterosclerotica. Tali caratteristiche fanno del RCT un importante target terapeutico. Questo lavoro di ricerca è stato mirato all’approfondimento delle conoscenze relative alla modulazione del RCT. In particolare, ci si è occupati di due aspetti principali: 1) la regolazione dei primi stadi del RCT da parte delle statine; 2) la modulazione del RCT attraverso stimolazione farmacologica del sistema LXR/RXR. Nella prima parte, abbiamo approfondito la modulazione della funzionalità della proteina ABCA1 da parte delle statine. In particolare, abbiamo studiato l’influenza delle statine sull’efflusso cellulare di colesterolo, sull’espressione di ABCA1 (mRNA e proteina) e sulla biosintesi di colesterolo. Nei macrofagi murini stimolati con cAMP, le statine hanno inibito la funzionalità di ABCA1. Nella seconda, abbiamo studiato i meccanismi di promozione del RCT da parte dello stimolazione LXR, in animali trattati o meno con un agonista LXR. Il lavoro ha dimostrato un aumento del potenziale di efflusso del plasma in seguito al trattamento farmacologico.Reverse cholesterol transport (RCT) describes the flux of cellular cholesterol from peripheral tissues towards the liver and its final excretion from the body into the bile. Cellular cholesterol efflux is the first step of this metabolic pathway. In our work we investigated: 1) the ability of statins to modulate ABCA1-mediated efflux in macrophages expressing ABCA1 upon treatment with cAMP; 2) the ability of a short term administration of the synthetic LXR agonist T0901317 (T0) to mice may affect RCT by modulating the capacity of plasma to promote cellular lipid efflux. The first part of the work shows that statins may inhibit ABCA1-mediated efflux in macrophages only when the protein expression is induced by cAMP; the lack of influence in foam cells seems to exclude a potential negative pleiotropic effect. The second one shows that pharmacological treatment of mice promotes macrophagic RCT in vivo. Plasma from T0-treated mice showed to possess an improved capacity to promote cholesterol release from cells through passive diffusion and SR-BI-mediated mechanisms. We can conclude that in vivo stimulation of LXR may promote macrophage-specific RCT with an effect involving the increase in serum efflux potential. Our results support the potential of LXR agonists as antiatherosclerotic compounds
    corecore