167 research outputs found

    A Nonlocal Finite Element Approach to Nanobeams

    Get PDF
    This paper presents a consistent derivation of a new nonlocal finite element procedure in the framework of continuum mechanics and nonlocal thermodynamics for the analysis of bending of nanobeams under transverse loads. This approach is able to provide the overall performance and the influence of specific parameters in the behavior of nanobeams and it is also able to deal with nanomechanical systems by solving a reduced number of algebraic equations. An example shows that the proposed nonlocal finite element procedure, using a mesh composed by only four elements of equal size, provides the exact values in terms of transversal displacement and bending of the nanobeam

    A finite element for nonlocal elastic analyses

    Get PDF
    A nonlocal elastic behaviour of integral type is modeled assuming that the nonlocality lies in the constitutive relation. The diffusion processes of the nonlocality are governed by an integral relation containing a recently proposed symmetric spatial weight function expressed in terms of an attenuation function. Starting from the variational formulation associated with the structural boundary-value problem in the context of nonlocal elasticity, a nonlocal finite element model is proposed and a 1D example is proposed

    A Nonlocal Model for Carbon Nanotubes under Axial Loads

    Get PDF
    Various beam theories are formulated in literature using the nonlocal differential constitutive relation proposed by Eringen. A new variational framework is derived in the present paper by following a consistent thermodynamic approach based on a nonlocal constitutive law of gradient-type. Contrary to the results obtained by Eringen, the new model exhibits the nonlocality effect also for constant axial load distributions. The treatment can be adopted to get new benchmarks for numerical analyses

    A Fully Gradient Model for Euler-Bernoulli Nanobeams

    Get PDF
    A fully gradient elasticity model for bending of nanobeams is proposed by using a nonlocal thermodynamic approach. As a basic theoretical novelty, the proposed constitutive law is assumed to depend on the axial strain gradient, while existing gradient elasticity formulations for nanobeams contemplate only the derivative of the axial strain with respect to the axis of the structure. Variational equations governing the elastic equilibrium problem of bending of a fully gradient nanobeam and the corresponding differential and boundary conditions are thus provided. Analytical solutions for a nanocantilever are given and the results are compared with those predicted by other theories. As a relevant implication of applicative interest in the research field of nanobeams used in nanoelectromechanical systems (NEMS), it is shown that displacements obtained by the present model are quite different from those predicted by the known gradient elasticity treatments

    On the regularity of curvature fields in stress-driven nonlocal elastic beams

    Get PDF
    AbstractElastostatic problems of Bernoulli–Euler nanobeams, involving internal kinematic constraints and discontinuous and/or concentrated force systems, are investigated by the stress-driven nonlocal elasticity model. The field of elastic curvature is output by the convolution integral with a special averaging kernel and a piecewise smooth source field of elastic curvature, pointwise generated by the bending interaction. The total curvature is got by adding nonelastic curvatures due to thermal and/or electromagnetic effects and similar ones. It is shown that fields of elastic curvature, associated with piecewise smooth source fields and bi-exponential kernel, are continuously differentiable in the whole domain. The nonlocal elastic stress-driven integral law is then equivalent to a constitutive differential problem equipped with boundary and interface constitutive conditions expressing continuity of elastic curvature and its derivative. Effectiveness of the interface conditions is evidenced by the solution of an exemplar assemblage of beams subjected to discontinuous and concentrated loadings and to thermal curvatures, nonlocally associated with discontinuous thermal gradients. Analytical solutions of structural problems and their nonlocal-to-local limits are evaluated and commented upon
    • …
    corecore