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This paper presents a consistent derivation of a new nonlocal finite element procedure in the framework of continuum mechanics
and nonlocal thermodynamics for the analysis of bending of nanobeams under transverse loads. This approach is able to provide
the overall performance and the influence of specific parameters in the behavior of nanobeams and it is also able to deal with
nanomechanical systems by solving a reduced number of algebraic equations. An example shows that the proposed nonlocal finite
element procedure, using a mesh composed by only four elements of equal size, provides the exact values in terms of transversal
displacement and bending of the nanobeam.

1. Introduction

Carbonnanotubes (CNTs) play a very significant role inmany
fields of nanotechnology, nanoscience, and nanoengineering
and have high applications in nanocomposites, nanoelectron-
ics, and nano-electromechanical systems and devices. There-
fore, a thorough understanding of their nanomechanical
properties is necessary for designing nanosystems and nan-
odevices [1].

Two main approaches for the analysis of CNTs can be
followed: atomic modeling and continuum modelling. The
former approach includes molecular dynamics simulations
which consider each individual molecule and its mechanical
or chemical mutual interactions [2]. As a consequence, the
computational effort is extremely time consuming and the
method is restricted to systems with a limited number of
molecules or atoms. The latter approach is considered in
this paper since it is more efficient from the analytical and
computational point of view, see, for example, [3, 4].

Nonlocal effects have been introduced in the framework
of nonlocal continuum theories by Eringen [5, 6]. Then gra-
dient and integral approaches have been extensively applied
to analyse localization phenomena, size-dependent effects,
plasticity, and damage problems [7–11]. However several
continuum models have been developed to analyse CNTs in
terms of classical (local) models, see, for example, [12].

Since size-dependent effects are fundamental in CNTs,
a nonlocal version of the classical Euler-Bernoulli beam is

adopted in this paper and the effects of the nonlocalities
on displacements and bending are investigated by using a
consistent nonlocal thermodynamic approach.

A new nonlocal finite element model for nanobeams is
then developed starting from a suitable variational statement
obtained from the nonlocal thermodynamic analysis. The
proposed procedure can be easily extended to different mod-
els of elastic nanobeams or to two-dimensional nanomodels.

Moreover, the use of the classical beam finite element
for the analysis of the transversal deflection of the Euler-
Bernoulli beam [13] is not adequate for the proposed nonlocal
finite element problem. Accordingly the nodal finite element
parameters of the beam are enhanced by introducing an
additional parameter associated with the second derivative of
the transversal displacement.The resulting element is termed
enhanced finite element (EFE).

Exact equilibrium conditions and higher-order differ-
ential governing equation with the corresponding higher-
order nonlocal boundary conditions are derived according to
the thermodynamic requirements following the framework
proposed in [14].The exact solution has been used as a bench-
mark for the enhanced finite element analysis.

A nanobeam under a uniformly distributed transverse
load is considered. The numerical solution is obtained by
the recourse to the proposed nonlocal EFE procedure and
the method shows no pathological behaviors such as mesh
dependence, numerical instability, or boundary effects. A
mesh composed of only 𝑛 = 4 elements of equal size provides
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the exact solution in terms of displacement and bending
moment.

The EFE procedure shows that the presence of a nonlocal
effect tends to induce higher stiffness for nanobeams and
the stiffness is enhanced with increasing nonlocal nanoscale
effect.

2. A Nonlocal Elastic Model

Assuming that there is no heat input due to radiation or con-
duction, the absolute temperature and the density of mass are
constant; the first law of thermodynamics, see, for example,
[15], for isothermal processes and for a nonlocal behaviour
can be formulated as follows:

∫

Ω

̇𝑒 𝑑x = ∫

Ω

𝜎 ∗ �̇� 𝑑x. (1)

The internal energy density 𝑒 depends on the strain tensor 𝜀
and entropy 𝑠, and a superimposed dotmeans time derivative.
The energy balance in (1) can bewritten pointwise in the body
domainΩ in the form [16]

̇𝑒 = 𝜎 ∗ �̇� + 𝑃, (2)

where 𝑃 is the nonlocality residual function which takes into
account the energy exchanges between neighbor particles
[17]. The residual 𝑃 fulfils the insulation condition

∫

Ω

𝑃𝑑x = 0, (3)

since the body is a thermodynamically isolated system with
reference to energy exchanges due to nonlocality.

The second principle of thermodynamics for isothermal
processes in the nonlocal context is written in its local form
[18] as follows:

𝐷 = ̇𝑠𝑇 ≥ 0, (4)

everywhere in Ω where ̇𝑠 is the internal entropy production
rate per unit volume and 𝐷 is the dissipation.TheHelmholtz
free energy 𝜙(𝜀, 𝑇) is defined by means of the Legendre
transform 𝜙 = 𝑒 − 𝑠𝑇 so that, using the relation (2), the dis-
sipation at a given point of the body is given in the following
form:

𝐷 = 𝜎 ∗ �̇� −
̇

𝜙 + 𝑃 ≥ 0. (5)

Note that (5) represents the nonlocal counterpart of the
Clausius-Duhem inequality for isothermal processes and
the nonnegativeness of the dissipation is guaranteed by the
presence of the nonlocality residual function.

The body energy dissipation E is given by integrating the
relation (5) to get

E = ∫

Ω

𝜎 ∗ �̇� 𝑑x − ∫

Ω

̇
𝜙 𝑑x

= ∫

Ω

𝜎 ∗ �̇� 𝑑x − ∫

Ω

𝑑
𝜀
𝜙 (𝜀) ∗ �̇� 𝑑x ≥ 0,

(6)

y

EJ

L

z
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Figure 1: Geometry and coordinate system of the beam.

which must hold for any admissible deformation mechanism
so that, following widely used arguments, the nonlocal elastic
state law is obtained as follows:

𝜎 = 𝑑
𝜀
𝜙 (𝜀) . (7)

Accordingly the body energy dissipationE vanishes and also
the dissipation is pointwise vanishing; that is,𝐷 = 0, since (5)
can be viewed as the nonnegative integrand of (6).

2.1. A Nonlocal Elastic Model of Nanobeams. Let us consider
a thin nanobeam with length 𝐿, cross sectional area 𝐴,
and Young’s modulus 𝐸 which is subjected to an external
distributed transverse load 𝑝(𝑧) as shown in Figure 1.

The Euler-Bernoulli beam theory is adopted where a
straight line normal to the midplane before deformation
remains straight and perpendicular to the deflectedmidplane
after deformation.

The axial elongation 𝜀 due to transverse displacements
V of the nanobeam is given by 𝜀 = −V(2)𝑦 where V(2) is the
second derivative along the nanobeam axis of the transversal
displacement field V and 𝑦 is the bending axis. The super-
posed apex (⋅)(𝑛) denotes the 𝑛-th derivative of (⋅) with respect
to the nanobeam axis 𝑧.

Nonlocality due to long range interactions arising in an
elastic structure can be provided in terms of an integral
relation which yields an integral constitutive relation [19]. An
alternative approach, see [6, 20], is followed in this paper
where the nonlocality is expressed in terms of a differential
relation so that the corresponding constitutive relation turns
out to be in a differential form.

The elastic energy for the nanobeams is defined according
to the following expression:

𝜙 (𝜀, 𝜀
(1)
) =

1

2

𝐸𝜀
2
+ (𝑒
0
𝑎)
2
𝐸𝜀
(1)
2

, (8)

where 𝑎 is an internal characteristic length (e.g., lattice
parameter, C–C bond length, or granular distance) and 𝑒

0
is

a material constant. The magnitude of 𝑒
0
can be determined

experimentally or approximated by matching the dispersion
curves of plane waves with those of atomic lattice dynamics.
Classical elasticity for continuum mechanics is recovered in
the limit of vanishing nonlocal nanoscale; that is (𝑒

0
𝑎) → 0.

In the sequel, the variational relation among the bending
moments and the displacement field, following from the
elastic energy (8), is explicitly recovered since it is the starting
point for the nonlocal FE analysis.
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The vanishing of the body energy dissipation (6) together
with the expression (8) provides the relation

∫

Ω

𝜎 ∗ ̇𝜀 𝑑𝑧 − ∫

Ω

𝑑
𝜀
𝜙 ∗ ̇𝜀 𝑑𝑧 − ∫

Ω

𝑑
𝜀
(1)𝜙 ∗ ̇𝜀

(1)
𝑑𝑧

= ∫

Ω

𝜎 ∗ ̇𝜀 𝑑𝑧 − ∫

Ω

𝜎
0
∗ ̇𝜀 𝑑𝑧 − ∫

Ω

𝜎
1
∗ ̇𝜀
(1)

𝑑𝑧 = 0,

(9)

where Ω = [0, 𝐿] so that the following constitutive relations
hold:

𝜎
0
= 𝑑
𝜀
𝜙 (𝜀, 𝜀

(1)
) = 𝐸𝜀,

𝜎
1
= 𝑑
𝜀
(1)𝜙 (𝜀, 𝜀

(1)
) = 𝐸(𝑒

0
𝑎)
2
𝜀
(1)
.

(10)

By inserting the expression of the beam axial elongation ̇𝜀 and
of its derivative ̇𝜀

(1) in the energy dissipation (9), after some
rearrangements of the various terms and denoting by𝑀,𝑀

0
,

and 𝑀
1
the bending moment associated with the stresses 𝜎,

𝜎
0
, and 𝜎

1
as follows:

𝑀 = ∫

Ω

𝜎𝑦𝑑𝑧, 𝑀
𝑖
= ∫

Ω

𝜎
𝑖
𝑦𝑑𝑧, 𝑖 = {0, 1} , (11)

a more explicit expression (see Appendix A) can be given to
the energy dissipation (9) in the following form:

∫

Ω

𝑀∗ V̇(2) 𝑑𝑧 − ∫

Ω

𝑀
0
∗ V̇(2) 𝑑𝑧 − ∫

Ω

𝑀
1
∗ V̇(3) 𝑑𝑧 = 0.

(12)

It is worth noting that the bending moments 𝑀
𝑖
, with 𝑖 =

{0, 1}, can be expressed in terms of the transversal displace-
ment field V as follows:

𝑀
0
= ∫

Ω

𝐸𝜀𝑦 𝑑𝑧 = −𝐸V̇(2) ∫
Ω

𝑦
2
𝑑𝑧 = −𝐸𝐽V̇(2),

𝑀
1
= ∫

Ω

𝐸(𝑒
0
𝑎)
2
𝜀
(1)
𝑦𝑑𝑧

= −𝐸(𝑒
0
𝑎)
2V̇(3) ∫

Ω

𝑦
2
𝑑𝑧 = −𝐸𝐽(𝑒

0
𝑎)
2V̇(3),

(13)

where 𝐸𝐽 is the beam bending stiffness. Further, equilibrium
considerations produce the usual results as follows:

𝑇
(1)

(𝑧) = −𝑝 (𝑧) , 𝑀
(1)

(𝑧) = 𝑇 (𝑧) ,

𝑀
(2)

(𝑧) = −𝑝 (𝑧) ,

(14)

where 𝑇 is the shear force.
The sixth-order nonlocal differential equilibrium equa-

tion and the related boundary conditions are reported for
completeness, in Appendix B. Moreover, the nonlocal exact
solution, obtained by solving the nonlocal sixth-order differ-
ential problem, is used as a benchmark to test the correspond-
ing solution obtained by the nonlocal FE method developed
in the next section.

A sixth-order nonlocal equation for buckling of nan-
otubes in the framework of the Euler-Bernoulli beam theory

has been obtained in [21] using a strain gradient approach.
Consistent sets of boundary conditions are used and, for cer-
tain forms of boundary conditions, it is shown that the buck-
ling load exhibits a considerable sensitivity in terms of the
nonlocal parameter. Moreover, the nonlocal model in [21]
envisages a buckling load that is smaller than the correspond-
ing local counterpart.

The stress gradient approach adopted in [21] yields a
fourth-order nonlocal equation for buckling of nanotubes
which is analogous to the governing equation in terms of
displacements for the nonlocal Euler-Bernoulli beam theory
obtained in [22] if a static model is considered.

3. A Nonlocal Finite Element for Nanobeams

The nonlocal elastic problem can be numerically solved by
means of a nonlocal finite element approach starting from
the relation (12). It will be shown that the proposed non-
local finite element method requires to build up a nonlocal
stiffness matrix which reflects the nonlocality features of the
nanobeam problem. An advantage of the proposed nonlocal
FE procedure is that the band width of the nonlocal stiffness
matrix turns out to be equal to the one of the local stiffness
matrix in standard FEM.

The domain Ω = [0, 𝐿] occupied by the nanobeam is
partitioned in the subdomains Ω

𝑒
⊆ Ω, with 𝑒 = 1, . . . , 𝑁,

such that ∪𝑁
𝑒=1

Ω
𝑒
= Ω andΩ

𝑖
∩ Ω
𝑗
= 0 for any element 𝑖 ̸= 𝑗.

Adopting a conforming finite element discretization, the
unknown displacement field V̇(𝑧) is given in the interpolated
form V̇𝑒

ℎ
(𝑧) = N

𝑒
(𝑧)q
𝑒
for each element 𝑒 with 𝑧 ∈ Ω

𝑒
. The

matrix collecting the chosen shape functions is N
𝑒
(𝑧) and

the vector collecting the nodal displacement of the 𝑒-th finite
element is denoted by q

𝑒
.

Moreover, a conforming displacement field V̇
ℎ
(𝑧) =

{V̇1
ℎ
(𝑧), V̇2
ℎ
(𝑧), . . . , V̇𝑁

ℎ
(𝑧)} satisfies the interelement continuity

conditions and the homogeneous boundary conditions so
that the rigid body displacements are ruled out.

The finite element procedure requires the definition of the
assembly operatorA

𝑒
which provides the nodal displacement

parameters q
𝑒
, pertaining to the 𝑒-th element, in terms of the

nodal parameters q according to the parametric expression
q
𝑒
= A
𝑒
q.

A recoursive application of Green’s formula with refer-
ence to the first term of (12) provides the following equality:

[𝑀 ∗ V̇(1)]
𝐿

0
− [𝑀
(1)

∗ V̇]
𝐿

0

+ ∫

Ω

𝑀
(2)

∗ V̇ 𝑑𝑧 − ∫

Ω

𝑀
0
∗ V̇(2) 𝑑𝑧

− ∫

Ω

𝑀
1
∗ V̇(3) 𝑑𝑧 = 0,

(15)

so that, recalling (13) and (14)
3
, it turns out to be

[𝑀 ∗ V̇(1)]
𝐿

0
− [𝑀
(1)

∗ V̇]
𝐿

0

− ∫

Ω

𝑝 ∗ V̇ 𝑑𝑧 + ∫

Ω

𝐸𝐽V̇(2) ∗ V̇(2) 𝑑𝑧

+ ∫

Ω

𝐸𝐽(𝑒
0
𝑎)
2V̇(3) ∗ V̇(3) 𝑑𝑧 = 0.

(16)
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The interpolated counterpart of the nonlocal variational for-
mulation (16) can be obtained by adding up the contributions
of each nonassembly element and imposing the conforming
requirement to the interpolating displacement. A direct
computation yields the relation

𝑁

∑

𝑒=1

∫

Ω
𝑒

𝐸𝐽N(2)
𝑒

(𝑧) q𝑒 ∗ N(2)
𝑒

(𝑧) 𝛿q𝑒 𝑑𝑧

+

𝑁

∑

𝑒=1

∫

Ω
𝑒

𝐸𝐽(𝑒
0
𝑎)
2N(3)
𝑒

(𝑧) q𝑒 ∗ N(3)
𝑒

(𝑧) 𝛿q𝑒 𝑑𝑧

= −

𝑁

∑

𝑒=1

[𝑀
𝑒
∗ V̇𝑒(1)
ℎ

]

𝐿

0
+

𝑁

∑

𝑒=1

[𝑀
(1)

𝑒
∗ V̇𝑒
ℎ
]

𝐿

0

+

𝑁

∑

𝑒=1

∫

Ω
𝑒

𝑝
𝑒 (
𝑧) ∗ N

𝑒 (
𝑧) 𝛿q𝑒 𝑑𝑧.

(17)

Then the matrix form of the discrete problem is obtained
from (17) as follows:

𝑁

∑

𝑒=1

A
𝑇

𝑒
K
𝑒𝑒
A
𝑒
q +

𝑁

∑

𝑒=1

A
𝑇

𝑒
K
𝑒𝑒
A
𝑒
q

=

𝑁

∑

𝑒=1

A
𝑇

𝑒
f
𝑒
−

𝑁

∑

𝑒=1

A
𝑇

𝑒
M
𝑒
+

𝑁

∑

𝑒=1

A
𝑇

𝑒
F
𝑒
,

(18)

in which the stiffness matrices are given by

K
𝑒𝑒

= ∫

Ω
𝑒

N(2)
𝑇

𝑒
(𝑧) 𝐸𝐽N(2)

𝑒
(𝑧) 𝑑𝑧,

K
𝑒𝑒

= ∫

Ω
𝑒

N(3)
𝑇

𝑒
(𝑧) 𝐸𝐽(𝑒0

𝑎)
2N(3)
𝑒

(𝑧) 𝑑𝑧,

(19)

and the force vectors are

p
𝑒
= ∫

Ω
𝑒

N
𝑒(
𝑧)
𝑇
𝑝
𝑒 (
𝑧) 𝑑𝑧,

M
𝑒
= [N(1)

𝑇

𝑒
(𝑧)𝑀𝑒 (

𝑧)]

𝐿

0

,

F
𝑒
= [N𝑇
𝑒
(𝑧)𝑀

(1)

𝑒
(𝑧)]

𝐿

0
.

(20)

The integrals appearing in (19) are performed elementwise so
that K

𝑒𝑒
is the standard stiffness matrix and the symmetric

matrix K
𝑒𝑒

turns out to be the nonlocal stiffness matrix
reflecting the nonlocality of the model.

Note that the band width of the nonlocal stiffness matrix
pertaining to nonlocal models of integral type is larger than
that in the standard stiffness matrix since the element 𝑖𝑗 of
the nonlocal stiffness matrix vanishes if the element 𝑗 is
beyond the influence distance with respect to the element 𝑖,
see [23].

On the contrary, the present nonlocal formulation shows
that the band width of the nonlocal stiffness matrix K

𝑒𝑒
is

equal to the one of the standard stiffnessmatrixK
𝑒𝑒
so that the

nonlocal effects does increase the dimension of the numerical
problem.

The solving linear equation system is obtained from (18)
and is given by

Kq = (K + K) q = f (21)

and the global stiffness matrix K is symmetric and positive
definite.

In the case of a local elastic behaviour, the nonlocal part of
the stiffness matrix vanishes and the solving equation system
decreases to the standard local FEM given by Kq = f .

4. An Example of Bending of Nanobeams

Anexample concerning nanobeams subjected to a distributed
load in the transverse direction is presented to highlight the
performances of the proposed nonlocal FE procedure.

The example reported in the next subsection shows that
the classical beam finite element for the analysis of the
transversal deflection of the Euler-Bernoulli beam is not
adequate for the solution of the nonlocal problem.

As a consequence, the classical finite element nodal
parameters for the bending analysis of nanobeams are
enhanced by introducing an additional nodal parameter
which is associated with the second derivative of the displace-
ment V̇. Accordingly, the total number of the nodal param-
eters for the bending analysis of nanobeams in the FE dis-
cretization is equal to six (three for each node). The resulting
finite element is called enhanced finite element (EFE).

A simply supported nanobeam is subjected to a uniformly
distributed transverse load 𝑝(𝑧) = 𝑝

0
. Some commonmolec-

ular values are adopted for the nanobeam parameters such
as the C–C bond length 𝑎 = 0.12 nm, nanobeam length 𝐿 =

100 nm, and 𝑒
0
ranging from 0 to the value of 166.7. Hence,

the dimensionless nonlocal nanolength scale (𝑒
0
𝑎)/𝐿 ranges

in the interval [0, 0.2].
The problem is discretized with 𝑛 enhanced finite ele-

ments (EFEs) all of equal size, namely, 𝑛 = 4 and 𝑛 = 10.
The nonlocal solution is compared with the local one and,
in order to check the performance of the proposed EFE, the
nonlocal finite element solution is compared with the exact
nonlocal solution obtained by the resolution of the sixth-
order differential equation reported in Appendix B, see (B.3),
with the boundary conditions defined in Table 2.

The plot of the displacement field V̇ is reported in Figure 2
considering the following values of the nonlocal material
constant 𝑒

0
= {0, 33.3}.

In particular, the EFE analysis with 𝑒
0
= 0 provides the

classical local solution (EFE0). Assuming 𝑒
0

= 33.3, the
results of the EFE analysis with 𝑛 = 10 and 𝑛 = 4 elements are,
respectively, labeled EFE1 and EFE2 in Figure 2.The nonlocal
solutions EFE0, EFE1, and EFE2 can thus be compared with
the corresponding exact solutions obtained by the resolution
of the sixth-order differential equation which are plotted in
ES1 for 𝑒

0
= 0 and in ES2 for 𝑒

0
= 33.3 (see Figure 2).

Figure 3 reports a close-up of the displacement fields
evaluated in Figure 2 in the interval 40 nm ≤ 𝑧 ≤ 60 nm
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Figure 2: Plot of the displacement field V̇ for the nonlocal material
constant 𝑒

0
= 33.3 with 𝑛 = 10 elements (EFE1), 𝑛 = 4 elements

(EFE2), and exact solution (ES2). The plot of the local solution is
EFE0 (𝑒

0
= 0) and the plot of the exact solution is ES1. The classical

beam FEM with 𝑛 = 50 elements is plotted in FE2.
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Figure 3: Close-up of the local and nonlocal displacement fields
reported in Figure 2 in the interval 40 nm ≤ 𝑧 ≤ 60 nm.

which clearly shows the difference between the local and
nonlocal EFE solutions.

It is worth noting that the EFE solution with only 4 ele-
ments exactly matches the corresponding analytical solution.
Further, the evaluated displacements with the EFE mesh
composed of 4 and 10 elements, see Figures 2 and 3, clearly
show that no mesh dependence or boundary effects are
pointed out by the considered nonlocal EFE model.

Moreover, the FE solution obtained with the classical
beam FEM considering a mesh composed of 50 elements is
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Figure 4: Plot of the displacement field V̇ for the nonlocal material
constant 𝑒

0
= 166.7 with 𝑛 = 10 elements (EFE3), 𝑛 = 4 elements

(EFE4), exact solution (ES3). The plot of the local solution is EFE0
(𝑒
0
= 0) and the plot of the exact local solution is ES1. The classical

beam FEM with 𝑛 = 50 elements is plotted in FE2.

also reported in Figures 2 and 3.The associated displacement
field is plotted in FE2 and the poor performance of this
element is apparent since the nonlocal effect is not exhibited.

The plot of the displacement field V̇ for the value 𝑒
0

=

166.7 of the nonlocal material parameter is reported in
Figure 4.

The results of the EFE analysis with 𝑛 = 10 and 𝑛 = 4

elements are labelled EFE3 and EFE4, respectively. As before,
the EFE analysis with 𝑒

0
= 0 provides the classical local

solution (EFE0). The nonlocal EFE solution is thus com-
pared with the corresponding exact solution obtained by the
resolution of the sixth-order differential equation which is
plotted in ES1 for 𝑒

0
= 0 and in ES3 for 𝑒

0
= 166.7. A

more significant nonlocal effect is apparent with increasing
the nonlocal material parameter.

Moreover, Figure 5 reports a close-up of the displacement
field plotted in Figure 4 in the interval 40 nm ≤ 𝑧 ≤ 60 nm.

Also in this case, the nonlocal EFE solution with 𝑛 = 4

elements best fits the exact solution and the results reported in
Figures 4 and 5 with 𝑛 = 4 and 𝑛 = 10 elements clearly show
that nomesh dependence or boundary effects are pointed out
by the considered EFE.

For the considered nanobeam, the bending moment
associated with the local and nonlocal models coincides as
shown in Figure 6 where the plot ES is related to the exact
solutions obtained by the sixth-order differential equation
and EFE0, EFE1, and EFE2 denote the nonlocal enhanced
finite element solution for 𝑒

0
= {0, 33.3, 166.7}, respectively.

5. Concluding Remarks

A thermodynamic analysis is developed in order to consis-
tently derive a nonlocal finite element model for nanobeams.
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Figure 5: Close-up of the local and nonlocal displacement fields in
the interval 40 nm ≤ 𝑧 ≤ 60 nm reported in Figure 4.
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Figure 6: Plot of the bending moment: exact solution (ES), EFE0
with 𝑒

0
= 0 and 𝑛 = 4 elements, EFE1 with 𝑒

0
= 33.3 and 𝑛 = 4

elements, and EFE2 with 𝑒
0
= 166.7 and 𝑛 = 4 elements.

The adopted procedure is quite general and can be straight-
forwardly extended to different models of elastic nanobeams
or to two-dimensional nanoelements.

A nanobeam under a uniformly distributed transverse
load is considered. The numerical solution is obtained by the
recourse to the proposed nonlocal enhanced finite element
(EFE) procedure and the method shows no pathological
behaviours such as mesh dependence, numerical instability,
or boundary effects. A mesh composed of only 𝑛 = 4

elements of equal size provides the exact solution in terms of
displacement and bending moment thus showing the good
performance of the proposed finite element method.

Table 1: Boundary conditions.

Boundary conditions (𝑧 = 0, 𝐿) Dual state variables (𝑧 = 0, 𝐿)

𝑀
(1)

=𝑀
(1)

0
−𝑀
(2)

1
V̇

𝑀 = 𝑀
0
−𝑀
(1)

1
V̇(1)

𝑀
1
= 0 V̇(2)

Appendices

A.

The axial elongation rate ̇𝜀 for the Bernoulli-Euler beam
theory is given by ̇𝜀(𝑧) = −V̇(2)(𝑧)𝑦 so that the three terms
appearing in the (9) become

∫

Ω

𝜎 ∗ ̇𝜀 𝑑𝑧 = −∫

Ω

𝜎 ∗ V̇(2) (𝑧) 𝑦 𝑑𝑧

= −∫

Ω

𝑀∗ V̇(2) (𝑧) 𝑑𝑧,

∫

Ω

𝜎
0
∗ ̇𝜀 𝑑𝑧 = ∫

Ω

𝜎
0
∗ V̇(2) (𝑧) 𝑦 𝑑𝑧

= −∫

Ω

𝑀
0
∗ V̇(2) (𝑧) 𝑑𝑧,

∫

Ω

𝜎
1
∗ ̇𝜀
(1)
𝑑𝑧 = ∫

Ω

𝜎
1
∗ V(3) (𝑧) 𝑦 𝑑𝑧

= −∫

Ω

𝑀
1
∗ V̇(3) (𝑧) 𝑑𝑧,

(A.1)

and the relation (12) is recovered.

B.

Two iterative applications of Green’s formula in (11) yield

[𝑀 ∗ V̇(1)]
𝐿

0
− [𝑀
(1)

∗ V̇]
𝐿

0
+ ∫

Ω

𝑀
(2)

∗ V̇ 𝑑𝑧

− [𝑀
0
∗ V̇(1)]

𝐿

0
+ [𝑀
(1)

0
∗ V̇]
𝐿

0
− ∫

Ω

𝑀
(2)

0
∗ V̇ 𝑑𝑧

− [𝑀
1
∗ V̇(2)]

𝐿

0
+ [𝑀
(1)

1
∗ V̇(1)]

𝐿

0
− [𝑀
(2)

1
∗ V̇]
𝐿

0

+ ∫

Ω

𝑀
(3)

1
∗ V̇ 𝑑𝑧 = 0.

(B.1)

A standard localization procedure then provides the differen-
tial equation

𝑀
(3)

1
−𝑀
(2)

0
= 𝑝, (B.2)

since 𝑀
(2)

= −𝑝, and the relevant boundary conditions are
reported in Table 1, where𝑀(1) denotes the shear force.

Recalling that the bending moments 𝑀
0
and 𝑀

1
are

provided in (13) in terms of the transversal displacement field
V, the differential equation (B.2) and its boundary conditions
reported in Table 1 can be expressed in terms of the transver-
sal displacement field V. In fact, the sixth-order differential
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Table 2: Boundary conditions in terms of the displacement field.

Boundary conditions (𝑧 = 0, 𝐿) Dual state variables (𝑧 = 0, 𝐿)

𝑀
(1)

= −𝐸𝐽V̇(3) + 𝐸𝐽(𝑒
0
𝑎)
2 V̇
(5)

V̇
𝑀 = −𝐸𝐽V̇(2) + 𝐸𝐽(𝑒

0
𝑎)
2 V̇
(4)

V̇(1)

𝐸𝐽(𝑒
𝑜
𝑎)
2 V̇
(3)

= 0 V̇(2)

equation for the nonlocal nanobeam is given in the following
form:

−𝐸𝐽(𝑒
0
𝑎)
2V̇(6) + 𝐸𝐽V̇(4) = 𝑝 (B.3)

and its boundary conditions are reported in Table 2.
Let us now provide the exact solution for a simply

supported nanobeam subjected to a uniformly distributed
transverse load 𝑝(𝑧) = 𝑝

0
.

Setting 𝑘 = 𝑒
0
𝑎, the boundary conditions to be imposed

are

V̇|𝑧=0,𝐿 = 0, (−V̇(2) + 𝑘
2V̇(4))





𝑧=0,𝐿

= 0,

V̇(3)




𝑧=0,𝐿

= 0, −𝐸𝐽𝑘
2V̇(6) + 𝐸𝐽V̇(4) = 𝑝

0
.

(B.4)

The exact nonlocal transversal deflection field V̇(𝑧) of the
simply supported nanobeam is given by:

V̇ (𝑧) = 𝑐
1
+ 𝑐
2
𝑧 + 𝑐
3
𝑧
2
+ 𝑐
4
𝑧
3

+ 𝑐
5
exp (

𝑧

𝑘

) + 𝑐
6
exp(−

𝑧

𝑘

) + 𝑐
7
𝑧
4
,

(B.5)

where the seven integration constants are obtained by solving
the system (B.4) and are reported hereafter

𝑐
1
=

[1 + exp (𝐿/𝑘)] 𝑘
3
𝐿𝑝
0

2𝐸𝐽 [exp (𝐿/𝑘) − 1]

, 𝑐
2
=

𝐿
3
− 12𝑘

2
𝐿

24𝐸𝐽

𝑝
0
,

𝑐
3
=

𝑘
2
𝑝
0

2𝐸𝐽

, 𝑐
4
= −

𝐿𝑝
0

12𝐸𝐽

,

𝑐
5
=

𝑘
3
𝐿𝑝
0

2𝐸𝐽 [1 − exp (𝐿/𝑘)]

, 𝑐
6
=

𝑘
3
𝐿𝑝
0
exp (𝐿/𝑘)

2𝐸𝐽 [1 − exp (𝐿/𝑘)]

,

𝑐
7
=

𝑝
0

24𝐸𝐽

.

(B.6)

Finally, the bending moment field 𝑀(𝑧) for the considered
nanobeam is

𝑀(𝑧) = −2𝐸𝐽 [𝑐
3
+ 3𝑐
4
𝑧 + 6𝑐

7
(−2𝑘
2
+ 𝑧
2
)] . (B.7)
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