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Abstract Elastostatic problems of Bernoulli–Euler nanobeams, involving internal kinematic constraints and
discontinuous and/or concentrated force systems, are investigated by the stress-driven nonlocal elasticity
model. The field of elastic curvature is output by the convolution integral with a special averaging kernel and
a piecewise smooth source field of elastic curvature, pointwise generated by the bending interaction. The total
curvature is got by adding nonelastic curvatures due to thermal and/or electromagnetic effects and similar ones.
It is shown that fields of elastic curvature, associated with piecewise smooth source fields and bi-exponential
kernel, are continuously differentiable in the whole domain. The nonlocal elastic stress-driven integral law
is then equivalent to a constitutive differential problem equipped with boundary and interface constitutive
conditions expressing continuity of elastic curvature and its derivative. Effectiveness of the interface conditions
is evidenced by the solution of an exemplar assemblage of beams subjected to discontinuous and concentrated
loadings and to thermal curvatures, nonlocally associated with discontinuous thermal gradients. Analytical
solutions of structural problems and their nonlocal-to-local limits are evaluated and commented upon.

1 Introduction

In the last few years, there has been a huge increase in technological applications characterized by smaller and
smaller structures whose design and optimization require assessing technically significant scale phenomena
[8]. In parallel, a flowering of proposals for the theoretical modelling of nonlocal behaviour has appeared in
the literature. Nonlocal continuum models can be conveniently used to capture in an effective way size effects
at micro- and nanoscales [5,7,13], when compared with computationally expensive atomistic strategies [6].
In the framework of nonlocal theories [3,4,9,10], the stress-driven integral formulation of elasticity provides
a consistent methodology to examine the size-dependent behaviour of nanocontinua. Serious issues intrinsic
to Eringen’s strain-driven integral convolution law are thus overcome [11,12].

The present analysis is developed in the simplest case of the geometrically linear Bernoulli–Euler theory
of plane straight beams. Denoting by x the abscissa along the axis, the total curvature field χ associated with
a piecewise regular transversal displacement field v is pointwise described in each regularity domain by 1

χ(x) := ∂2x v . (1)

The natural constitutive assumption is that the total curvature χ is the sum of elastic curvature χel and of
nonelastic curvature fields χnel due to any other effect, such as thermal, electromagnetic and similar one, so
that

χ = χel + χnel . (2)

1 The symbol ∂nx denotes n-times differentiation along the beam axis x .
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According to the stress-driven nonlocal elasticity model [11], the elastic curvature is the convolution integral
between a source field of local elastic curvature M

K (possibly nonsmooth) and an averaging kernel φ :

χel(x) =
(
φ ∗ M

K

)
(x) :=

∫ L

0
φ(x − ξ, c) · M

K
(ξ) dξ , (3)

with c > 0 characteristic length, M bending interaction 2, and K local elastic bending stiffness given by the
second moment of Euler–Young modulus E on the beam cross sections.

The special properties of Helmholtz’s averaging kernel:

φ(x, c) := 1

2 c
exp

(
− |x |

c

)
, (4)

will play a key role in the subsequent regularity analysis.
By this special choice, the convolution integral equation (3) can be inverted [11] by expressing the source

field M
K in terms of the output field χel .

Specifically, for smooth source fields M
K in the domain [0,L] , the elastic curvature χel expressed by Eq.

(3) results to be the unique solution of the differential equation [11, Eq. (57)],

1

c2
χel(x) − ∂2xχ

el(x) = 1

c2
M

K
(x) , x ∈ [0,L] , (5)

with the constitutive boundary conditions [11, Eq. (58)]

⎧⎪⎨
⎪⎩

∂xχ
el(0) = 1

c
χel(0) ,

∂xχ
el(L) = −1

c
χel(L) .

(6)

The motivation of the present paper consists in extending the constitutive differential formulation Eqs. (5)
and (6) to piecewise smooth source fields M

K in order to solve assemblages of nanobeams involving internal
kinematic constraints and nonsmoothly distributed and/or concentrated force systems.

The problem is tackled by detecting the regularity properties of the elastic curvature fields expressed by
the convolution integral with the special averaging kernel Eq. (4).

For simplicity sake, the assemblage domain is partitioned into two parts [0, L] = [0, xd ] ∪ [xd , L], and
we set

χel(x) =
(
φ ∗ M

K

)
(x) =

{
χel
1 (x) , x ∈ [0, xd ] ,

χel
2 (x) , x ∈ [xd , L] . (7)

The plan is the following.
In Sect. 2, regularity properties of elastic curvature fields χel given by Eq. (7) are discussed in terms of

the source field M
K and of its derivative. As an implication, equivalent integral and differential laws of stress-

driven nonlocal elasticity for nanobeams, supplemented with the proper constitutive boundary and interface
conditions, are presented.

The new approach is applied in Sect. 3 to a case-problem involving both elastic and thermal nonlocal
effects.

Closing remarks are outlined in Sect. 4.

2 The bending interaction is most commonly but inappropriately named bending moment. A bending interaction consists in
fact of a pair of opposite bending moments, in obedience to Newton’s principle of action and reaction. Similarly for axial, shear
and twisting interactions.



On the regularity of curvature fields 2597

2 Differential formulation of nonlocal elasticity

The next two propositions are prodromic in formulating a constitutive differential problem equivalent to the
stress-driven integral model of nonlocal elasticity Eq. (7) equipped with the special averaging kernel Eq. (4).

Proposition 1 Elastic curvatures generated by the stress-driven convolution integral Eq. (7) with the special
kernel Eq. (4) are continuously differentiable fields χel ∈ C1([0, L]; �) in the whole domain, for any piecewise
smooth source field of local elastic curvature.

Proof Applying the definition of the convolution integral Eq. (3) and using the special kernel Eq. (4), the
elastic curvature χel in Eq. (7) writes as

χel(x) =
{

χel
1 (x) , x ∈ [0, xd ]

χel
2 (x) , x ∈ [xd , L],

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2c

∫ x

0
exp

(
t − x

c

)
M1

K1
(t)dt + 1

2c

∫ xd

x
exp

(
x − t

c

)
M1

K1
(t)dt

+ 1

2c

∫ L

xd
exp

(
x − t

c

)
M2

K2
(t)dt, x ∈ [0, xd ] ,

1

2c

∫ xd

0
exp

(
t − x

c

)
M1

K1
(t)dt + 1

2c

∫ x

xd
exp

(
t − x

c

)
M2

K2
(t)dt

+ 1

2c

∫ L

x
exp

(
x − t

c

)
M2

K2
(t)dt, x ∈ [xd , L] .

(8)

By known results of calculus, the elastic curvature field Eq. (8) is continuously differentiable in the whole
domain, with the derivative given by

∂xχ
el(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2c2

(
−

∫ x

0
exp

(
t − x

c

)
M1

K1
(t)dt +

∫ xd

x
exp

(
x − t

c

)
M1

K1
(t)dt

+
∫ L

xd
exp

(
x − t

c

)
M2

K2
(t)dt

)
, x ∈ [0, xd ] ,

1

2c2

(
−

∫ xd

0
exp

(
t − x

c

)
M1

K1
(t)dt −

∫ x

xd
exp

(
t − x

c

)
M2

K2
(t)dt

+
∫ L

x
exp

(
x − t

c

)
M2

K2
(t)dt

)
, x ∈ [xd , L] .

(9)

��
Combining Eq. (8) with Eq. (9), several equivalent expressions of the elastic curvature derivative can be given.
For instance, the expression:

∂xχ
el(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

c

(
χel(x) − 1

c

∫ x

0
exp

(
t − x

c

)
M1

K1
(t)dt

)
, x ∈ [0, xd ] ,

1

c

(
− χel(x) + 1

c

∫ L

x
exp

(
x − t

c

)
M2

K2
(t)dt

)
, x ∈ [xd , L] ,

(10)

evaluated at the point xd , provides the interface conditions in ([2, Eqs. (13)2, (14)1]).
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Table 1 Regularity properties of the elastic curvature field

M

K

M

K
∂x

M

K
∂x

M

K
Continuous (C) Discontinuous (D) Continuous (C) Discontinuous (D)

χel C C − −
∂xχ

el C C − −
∂2xχ

el C D − −
∂3xχ

el − − C D

Proposition 2 Second and higher-order derivatives of elastic curvatures, expressed according to the convo-
lution Eq. (7) and kernel Eq. (4), are given by

∂2xχ
el(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

c2

(∫ x

0
exp

(
t − x

c

)
M1

K1
(t)dt −

∫ x

xd
exp

(
x − t

c

)
M1

K1
(t)dt

+
∫ L

xd
exp

(
x − t

c

)
M2

K2
(t)dt − M1

K1
(x)

)
, x ∈ [0, xd [ ,

1

c2

(∫ xd

0
exp

(
t − x

c

)
M1

K1
(t)dt +

∫ x

xd
exp

(
t − x

c

)
M2

K2
(t)dt

−
∫ x

L
exp

(
x − t

c

)
M2

K2
(t)dt − M2

K2
(x)

)
, x ∈]xd , L]

(11)

with n ∈ {0, 1, 2, ...} and ∂0x the identity operator.

Proof The second derivative of the elastic curvature χel in Eq. (8) is given by

∂2xχ
el(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2c3

( ∫ x

0
exp

(
t − x

c

)
M1

K1
(t)dt −

∫ x

xd
exp

(
x − t

c

)
M1

K1
(t)dt

+
∫ L

xd
exp

(
x − t

c

)
M2

K2
(t)dt

)
− 1

c2
M1

K1
(x), x ∈ [0, xd [ ,

1

2c3

( ∫ xd

0
exp

(
t − x

c

)
M1

K1
(t)dt +

∫ x

xd
exp

(
t − x

c

)
M2

K2
(t)dt

−
∫ x

L
exp

(
x − t

c

)
M2

K2
(t)dt

)
− 1

c2
M2

K2
(x), x ∈]xd , L] .

(12)

Using Eq. (8) in Eq. (12), we infer Eq. (11) for n = 0 . For n ≥ 1 the proof of Eq. (11) is got by n-times
differentiating Eq. (12). ��

Some noteworthy regularity properties of the elastic curvature field can be inferred from Propositions 1
and 2, as summarized in Table 1.

Consequent to the analysis above, for piecewise smooth source fields M
K in the domain [0,L] , the elastic

curvature χel expressed by Eq. (7) results to be the unique solution of a constitutive differential problem
with boundary and interface conditions. Specifically, setting n = 0 in Eq. (11), the constitutive problem is
described by the system of second-order differential equations:

⎧⎪⎪⎨
⎪⎪⎩

1

c2
χel
1 (x) − ∂2xχ

el
1 (x) = 1

c2
M1

K1
(x) , x ∈ [0, xd ] ,

1

c2
χel
2 (x) − ∂2xχ

el
2 (x) = 1

c2
M2

K2
(x) , x ∈ [xd , L] ,

(13)

each one pertaining to a regularity domain for the source field M
K .
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The relevant boundary and interface conditions are, respectively, given by
⎧⎪⎨
⎪⎩

∂xχ
el
1 (0) = 1

c
χel
1 (0) ,

∂xχ
el
2 (L) = −1

c
χel
2 (L) ,

(14)

and {
χel
1 (xd) = χel

2 (xd) ,

∂xχ
el
1 (xd) = ∂xχ

el
2 (xd) .

(15)

Note that Eq. (14) is got by evaluating and comparing the expressions in Eqs. (8), (9) at the domain boundary
∂[0,L] . According toProp.1, Eq. (15) collects the continuity conditions of elastic curvature and of its derivative.
Equivalently, as illustrated in the synoptic Table 1, alternative constitutive interface conditions can be chosen,
depending on regularity properties of the source field M

K considered in the stress-driven law of nonlocal
elasticity Eq. (7).

2.1 Asymptotic elastic curvatures

The stress-driven integral elasticity formulation Eq. (7) is well defined for any value of the scale-length
parameter c > 0 . It is interesting to examine limit behaviours as c → 0+ of elastic curvatures at regularity
internal points x ∈ ]0, xd [ ∪ ]xd , L[ , at beam ends x ∈ { 0, L }, and at the interface point x = xd .

To this end, let us recall from [12] that the nonlocal-to-local limit ( c → 0+ ) of the averaging kernel φ
depends on the location of the evaluation point and precisely is given by

– Dirac impulse δ at regularity internal points;
– halved Dirac impulse δ

2 at beam ends, due to elimination of the part of the kernel which falls out of the
domain of integration.

Regarding the limit elastic curvature at interface point x = xd , it is convenient to split the convolution integral
Eq. (7) into two parts,

χel(xd) =
(
φ ∗ (M/K )

)
(xd) =

∫ L

0
φ(xd − ξ, c) · M

K
(ξ) dξ

=
∫ xd

0
φ(xd − ξ, c) · M1

K1
(ξ) dξ +

∫ L

xd
φ(xd − ξ, c) · M2

K2
(ξ) dξ ,

(16)

and to observe that xd is boundary point of both the integration domains. Thus, the limit nonlocal curvature
at point x = xd is the average value of local elastic curvatures M1

K1
(xd) and M2

K2
(xd) .

In sum, the limit behaviour of the nonlocal elastic curvature is given by

χel
0+(x) := lim

c→0+ χel(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M1

2K1
(0) , x = 0 ,

M1

K1
(x) , x ∈ ]0, xd [ ,

1

2

(M1

K1
(xd) + M2

K2
(xd)

)
, x = xd ,

M2

K2
(x) , x ∈ ]xd , L[ ,

M2

2K2
(L) , x = L .

(17)

Remark 1 As got in Eq. (17), except for null measure sets, the limit nonlocal elastic curvature coincides with
the one obtained by the local elasticity model. Accordingly, asymptotic displacement solutions for c → 0+
of nonlocal beam problems are coincident with local solutions in the whole structural domain. The theoretical
prediction is confirmed by numerical evidence in Sect. 3.
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ΔT
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h

Fig. 1 Geometric sketch of an assemblage of beams under concentrated couple, piecewise smooth distributed loading, and thermal
distortion

3 Structural problem

Let us consider the articulated assemblage of Bernoulli–Euler beams in Fig. 1 formulated by the stress-driven
nonlocal model of elasticity.

The elastostatic problem is expressed in terms of transverse displacements v = { v1, v2, v3 } by partitioning
the beamdomain [0, L] , differentiating twice the elasticity laws (13) (rewritten in the three intervals), enforcing
equilibrium ∂2x M = ∂2x { M1, M2, M3 } = { q, 0, 0 }, and using the formulae Eqs. (1) and (2).

The resulting differential problem of elastic equilibrium to be integrated is
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1

c2
∂4x v1(x) − ∂6x v1(x) = 1

c2

( q

K1
+ ∂2xχ

nel(x)
)

− ∂4xχ
nel(x) , x ∈

[
0,

L

3

]
,

1

c2
∂4x v2(x) − ∂6x v2(x) = 1

c2
∂2xχ

nel(x) − ∂4xχ
nel(x) , x ∈

[ L
3

,
2L

3

]
,

1

c2
∂4x v3(x) − ∂6x v3(x) = 1

c2
∂2xχ

nel(x) − ∂4xχ
nel(x) , x ∈

[2L
3

, L
]
.

(18)

The set { v1, v2, v3 } of displacement functions is evaluated by integrating the differential problemEq. (18) and
enforcing standard (essential) kinematic and (natural) static boundary conditions, nonstandard (constitutive)
boundary Eq. (14) and continuity Eq. (15) boundary conditions. Using still Eqs. (1), (2) and (14), (15) are,
respectively, expressed in terms of displacements by

⎧⎪⎨
⎪⎩

∂3x v1(0) − ∂xχ
nel(0) = 1

c
(∂2x v1(0) − χnel(0)) ,

∂3x v3(L) − ∂xχ
nel(L) = −1

c
(∂2x v3(L) − χnel(L)) ,

(19)

and ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂2x v1(L/3) = ∂2x v2(L/3) ,

∂3x v1(L/3) = ∂3x v2(L/3) ,

∂2x v2(2L/3) = ∂2x v3(2L/3) ,

∂3x v2(2L/3) = ∂3x v3(2L/3).

(20)

The butterfly-shaped thermal distortionwith gradient g
ΔT := ΔT

h leads to nonlocal nonelastic effects captured
by the convolution integral

χnel(x) = χ th(x) :=
∫ L

2 L
3

φ(x − ξ, c) α g
ΔT dξ , x ∈ [0, L] , (21)

with α the coefficient of linear isotropic thermal expansion.
The elastostatic problem is solved using the Mathematica software due to Stephen Wolfram [14]. In order

to provide numerical values to the solver, we set K = K1 = K2 = K3, L = 1, and

qL3

K
= ML

K
= αΔT

h
L = 1 . (22)
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Fig. 2 Thermal curvature χ th versus x for λ ∈ {0+, 0.05, 0.1, 0.2, 0.3, 0.4}
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Fig. 3 Elastic curvature χel versus x for λ ∈ {0+, 0.05, 0.1, 0.2, 0.3, 0.4}

The prescribed thermal curvature Eq. (21) is depicted in Fig. 2 for increasing length-scale parameter λ = c
L

which regulates entities of nonlocal effects.
Note that the local thermal curvature, vanishing in the interval [0, 2L

3 ] and equal to αgΔT in the interval
[ 2L3 , L] , is recovered as the nonlocal parameter tends to zero, λ → 0+ .

Figure 3 represents the elastic curvature field χel for increasing values of λ , a smooth function for strictly
positive values of λ as predicted in Sect. 2.

For λ = 0+ the local elastic curvature is recovered except for the beam ends { 0, L } and for the interface
{ 2L

3 } where the asymptotic values theoretically predicted in Eq. (17) are obtained. Total curvatures χ depicted
in Fig. 4 become lower and uniform as the nonlocal parameter increases, and, at limit, the local total curvature
is recovered ∀x ∈]0, L[ .

Finally, a plot of transverse displacement v as function of λ (Fig. 5) shows a stiffening behaviour for
increasing nonlocal parameter, in agreement with the smaller-is-stiffer phenomenon [1].

4 Closing remarks

Outcomes of the research may be summarized as follows.

(i) The size-dependent behaviour of Bernoulli–Euler nanobeams has been investigated by the stress-driven
nonlocal integral theory of elasticity, with the bi-exponential averaging kernel.

(ii) Regularity properties of the curvature fields generated by the nonlocal elastic law have been investigated
and detected. This result does indeed play a key role in formulating the constitutive system of second-order
differential equations equivalent to the stress-driven convolution integral of nonlocal elasticity. The relevant
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Fig. 4 Total curvature χ versus x for λ ∈ {0+, 0.05, 0.1, 0.2, 0.3, 0.4}
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Fig. 5 Displacement v versus x for λ ∈ {0+, 0.05, 0.1, 0.2, 0.3, 0.4}

nonstandard boundary and interface conditions are shown to stem directly from the continuity property of
the elastic curvature and its derivative in the whole domain.

(iii) The proposed nonlocal approach has been exploited to solve the elastostatic problem of an assemblage
of beams subjected to complex loading conditions including discontinuous and concentrated forces and
impressed distortions.

(iv) The integration strategy pertaining to the deflection curve of local elastic beams has been so extended to
stress-driven nonlocal elasticity.An effectivemodelling is thus available to assess size effects in nanobeams.
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