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Various beam theories are formulated in literature using the nonlocal differential constitutive relation proposed by Eringen. A new
variational framework is derived in the present paper by following a consistent thermodynamic approach based on a nonlocal
constitutive law of gradient-type. Contrary to the results obtained by Eringen, the new model exhibits the nonlocality effect also
for constant axial load distributions. The treatment can be adopted to get new benchmarks for numerical analyses.

1. Introduction

Carbon nanotubes (CNTs) are a topic of major interest both
from theoretical and applicative points of view. This subject
is widely investigated in literature to describe small-scale
effects [1–4], vibration and buckling [5–13], and nonlocal
finite element analysis [14–18]. A comprehensive review on
applications of nonlocal elastic models for CNTs is reported
in [19] and therein references. Buckling of triple-walled CNTs
under temperature fields is dealt with in [20]. An alternative
methodology is based on an atomistic-based approach [21]
which predicts the positions of atoms in terms of interactive
forces and boundary conditions. The standard approach
to analyze CNTs under axial loads consists in solving an
inhomogeneous second-order ordinary differential equation
providing the axial displacement field, see, for example, [22].
The known term of the differential equation is the sum of
two contributions. The former describes the local effects
linearly depending on the axial load. The latter characterizes
the small-scale effects depending linearly on the second
derivative along the rod axis of the axial load. This model is
thus not able to evaluate small-scale effects due to, constant
axial loads per unit length.This approach, commonly adopted
in literature, is based on the following nonlocal linearly elastic
constitutive law proposed by Eringen [23]:
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axial elongation. Indeed, integrating on the rod cross section
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resultant of normal stress field we get the differential equation
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where 𝜀 = 𝑤
(1), with 𝑤

(1) being first derivative along the
rod axis of the axial displacement field 𝑤 : [0, 𝐿] → R,
where 𝐿 is the rod length and 𝐴 denotes the cross section
area. Since the equilibrium prescribes that the first derivative
of 𝑁 is opposite to the axial load 𝑝, we infer the well-known
differential equation (see, e.g., [7]) as follows:
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Note that the nonlocal contribution vanishes for constant
loads 𝑝. In the present paper, an alternative nonlocal consti-
tutive behavior is adopted to assess small-scale effects in nan-
otubes also for constant axial loads. The corresponding axial
displacement field is shown to be governed by a fourth-order
inhomogeneous differential equation. Boundary conditions
are naturally inferred by performing a standard localization
procedure of a variational problem formulated by making
recourse to thermodynamic restrictions see, for example,
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[24–26], according to the geometric approach illustrated in
[27–30]. As an example, the displacement field of nanotubes
under constant axial loads per unit length is evaluated in the
appendix. Vibration and buckling effects are not the subject
of this paper and will be addressed in a forthcoming paper.

2. Nonlocal Variational Formulation

Let B be the three-dimensional spatial domain of a straight
rod subjected to axial loads. An apex (∙)

(𝑛) stands for 𝑛th
derivative along the rod centroidal 𝑧-axis. Kinematic compat-
ibility between axial elongations 𝜀 and axial displacements 𝑤

is expressed by the differential equation 𝜀 = 𝑤
(1). Denoting by

a dot the time-rate, the following noteworthy relations hold
true
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. (4)

Thedifferential equation of equilibrium turns out to be𝑁(1) =
−𝑝. Boundary equilibrium prescribes that at the end cross
sections act axial loads equal to 𝑁(0) for 𝑧 = 0 and to 𝑁(𝐿)

for 𝑧 = 𝐿. Let us now consider a nonlocal constitutive model
of gradient-type defined by assigning the following elastic
energy functional per unit volume:
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with 𝑐 := 𝑒
𝑜
𝑎 being nonlocal parameter. Relation (5) is

similar to the elastic energy density proposed in [31] where
a homogeneous quadratic functional including also mixed
terms is assumed. The elastic energy time rate is hence
expressed by the formula
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are the static variables conjugating with the kinematic vari-
ables 𝜀 and 𝜀

(1).The static variable 𝜎
1
is the scalar counterpart

of the so-called double stress tensor [31]. By imposing the
thermodynamic condition (see, e.g., [32–34])
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where 𝜎 is the normal stress, we infer the relation
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The relevant differential and boundary equations are thus
obtained as shown hereafter. Substituting the expression of

the rates ̇𝜀 and ̇𝜀
(1) in terms of the axial displacement 𝑤(𝑧) of

the cross section at abscissa 𝑧, we get the formulae
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with𝑁 = ∫
Ω

𝜎𝑑𝐴 axial force (static equivalence condition on
the cross sections) and 𝑁

𝑖
:= ∫
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𝑑𝐴 for 𝑖 ∈ {0, 1}. Thermo-

dynamic condition (9) provides the axial contribution
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3. Differential and Boundary Equations of
Elastic Equilibrium

Resorting to Green’s formula, a standard localization proce-
dure provides the differential and boundary equations corre-
sponding to the variational conditions inferred in Section 2,
as follows. A direct computation gives
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Substituting into the variational condition (11), a suitable
localization provides the relevant differential equation
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These conditions can be conveniently expressed in terms
of the axial displacement field 𝑤 as follows. A direct evalua-
tion of the scalar functions 𝑁

𝑖
: [0, 𝐿] → R for 𝑖 ∈ {0, 1} and

of their derivatives gives
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with 𝑗 ∈ {1, 2, . . . , 𝑛}. Accordingly, the boundary and
differential conditions of elastic equilibrium (13) and (14) take
the form
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4. Example

Let us consider a straight rod subject to a constant axial load
𝑝 as depicted in Figure 1. End cross sections A and B are
assumed to be hinged and simply supported, respectively.
As illustrated in Section 3, the computation of the rod axial
displacement field 𝑤 involves the following cross section
geometric and elastic properties: area 𝐴, Young modulus 𝐸,
and nonlocal parameter 𝑐. By setting 𝛼 := 𝐸𝐴𝑐

2 and 𝛽 := 𝐸𝐴,
the differential equation of elastic equilibrium is as follows:
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The general integral takes thus the form (see the appendix)
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Figure 1: Rod under constant axial load.

The evaluation of the constants is carried out by imposing the
following boundary conditions (see also Section 3):
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Resorting to the expressions of the derivatives 𝑤
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and having √𝛽/𝛼 = 1/𝑐, a direct computation provides the
algebraic system
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Figure 2: Axial displacement field𝑤 for 𝑐 = 0 (local solution—black
line), 𝑐 = 1 nm (blue line), 𝑐 = 2 nm (red line), 𝑐 = 3 nm (green
line), 𝑐 = 4 nm (orange line), 𝑐 = 5 nm (yellow line), and 𝑐 = 25 nm
(brown line). 𝐸 = 300GPa; 𝐿 = 10 nm; 𝐴 = 80 ⋅ 10

−2 nm2; and
𝑝 = 10

−8 N/nm.

A further condition can be obtained by imposing that the
scalar field

𝑤 (𝑧) = 𝑐
5
𝑧
2 (23)

is a particular solution of the differential equation (17),
whence it follows that 𝑐

5
= −𝑝/2𝐸𝐴.The remaining constants

are given by the formulae
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(24)

having 𝑐
5

= −𝑝/2𝐸𝐴. A plot of the rod axial displacement
field 𝑤 for different values of the nonlocal parameter 𝑐 is
provided in Figure 2. It is apparent that the rod becomes
stiffer if the nonlocal parameter increases.The evaluated axial
displacement at the free end of the rod B provides the same
value independently of the nonlocal parameter. Such a value
coincideswith the displacement of the pointB if a localmodel
is considered. Moreover, the limit of the axial displacement
field for 𝑐 tending to plus infinity can be evaluated to get the
lower bound

𝑤
low

(𝑧) := lim
𝑐→+∞

𝑤 (𝑧, 𝑐) = 0.208333𝑧. (25)

Hence, large values of the nonlocal parameter provide a
displacement field which tends to a linear one, see Figure 2,
for 𝑐 = 25. Further, the limit value of the axial displacement
for 𝑧 = 𝐿 and 𝑐 → +∞, obtained by (25), yields 𝑤

low
(𝐿) =

2.08333 nm which coincides with the axial displacement at B
for any value of the nonlocal parameter 𝑐, see Figure 3 and
Table 1.
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Figure 3: Axial displacement in terms of the nonlocal parameter 𝑐

at the abscissa 𝑧 = 𝐿/2 (blue line) and 𝑧 = 𝐿 (red line).

Table 1: Axial displacements 𝑤(𝐿/2) and 𝑤(𝐿) versus the nonlocal
parameter 𝑐.

𝑐 (nm) 𝑤(𝐿/2) (nm) 𝑤(𝐿) (nm)
0 1.5625 2.08333
1 1.52139 2.08333
2 1.42301 2.08333
3 1.32428 2.08333
4 1.24886 2.08333
5 1.19589 2.08333
25 1.05021 2.08333

The upper bound of the axial displacement is provided by
the local solution (i.e., 𝑐 = 0)

𝑤
upp

(𝑧) := 𝑤 (𝑧, 0) =

𝑝 (𝑧) (2𝐿 − 𝑧) 𝑧

2𝐸𝐴

. (26)

The axial displacement evaluated for 𝑧 = 𝐿 by (26) yields
the value𝑤

upp
(𝐿) = 25/12 nm which coincides with the axial

displacement at B for any value of 𝑐, see Figure 3 and Table 1.
For the considered model, the upper and lower bounds of
the axial displacement field are given by (25) and (26). The
axial displacement 𝑤(𝐿/2) at the middle point of the rod
and the maximum axial displacement 𝑤(𝐿) as functions
of the nonlocal parameter 𝑐 are depicted in Figure 3. The
corresponding numerical values of𝑤(𝐿/2) and𝑤(𝐿) are listed
in Table 1.

It is worth noting that equilibrium prescribes that axial
force 𝑁 must be a linear function, confirmed by the blue
diagram in Figure 4 obtained as difference between the local
contribution 𝑁

𝑜
(dashed line) and the nonlocal one 𝑁

(1)

1

(continuous thin line), according to (14)
1
for any value of 𝑐.

5. Conclusions

The outcomes of the present paper may be summarized as
follows.

(i) Linearly elastic carbon nanotubes under axial loads
have been investigated by a nonlocal variational
approach based on thermodynamic restrictions. The
treatment provides an effective tool to evaluate small-
scale effects in nanotubes subject also to constant
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Figure 4: Axial force 𝑁 = 𝑁
𝑜
− 𝑁
(1)

1
(blue line), 𝑁

𝑜
(dashed line),

𝑁
(1)

1
(continuous thin line); 𝑐 = 0 (local solution-black line), 𝑐 =

1 nm (blue line), 𝑐 = 2 nm (red line), 𝑐 = 3 nm (green line), 𝑐 = 4 nm
(orange line), 𝑐 = 5 nm (yellow line), and 𝑐 = 25 nm (brown line).

axial loads, a goal not achievable by the Eringen
model commonly adopted in literature as motivated
in Section 1.

(ii) Relevant boundary and differential conditions of
elastic equilibrium have been inferred by a standard
localization procedure. Such a procedure provides,
in a consistent way, the relevant class of boundary
conditions for the nonlocal model.

(iii) The present approach yields a firm thermodynamic
procedure to derive different nonlocal models for
CNTs by suitable specializations of the elastic energy.

(iv) Exact solutions of carbon nanotubes subject to a
constant axial load have been obtained. An advantage
of the proposed procedure consists in providing an
effective tool to be used as a benchmark for numerical
analyses. Finally, a range to which any nonlocal
solution must belong is analytically evaluated.

Appendix

The procedure to solve the ordinary differential equation

𝛼𝑤
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− 𝛽𝑤
(2)

= 𝑓, (A.1)

with 𝛼, 𝛽 > 0 being constant coefficients and 𝑓 : 𝐼 ⊆ R → R
being a continuous function, is summarized as follows. Let us
consider the homogeneous differential equation
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(2)

= 0 (A.2)

and the relevant characteristic (algebraic) equation 𝛼𝜆
4

−

𝛽𝜆
2

= 0. The roots of the polynomial 𝛼𝜆4 − 𝛽𝜆
2 are 𝜆

1
= 0

with multiplicity 2, 𝜆
2

= √𝛽/𝛼 with multiplicity 1 and 𝜆
3

=

−√𝛽/𝛼 with multiplicity 1. The general integral of (A.2) is
thus expressed by the formula

𝑤
𝐻

(𝑧) = 𝑐
1
+ 𝑐
2
𝑧 + 𝑐
3
exp(√

𝛽

𝛼

𝑧)

+ 𝑐
4
exp(−√

𝛽

𝛼

𝑧) ,

(A.3)

with exp denoting exponential function and 𝑐
𝑖
∈ R for 𝑖 =

{1, . . . , 4}. The general integral of (A.1) is writen therefore as

𝑤 (𝑧) = 𝑤
𝐻

(𝑧) + 𝑤 (𝑧) , (A.4)

where 𝑤 is a particular solution of (A.1). It is worth noting
that, for 𝑓 defined by a polynomial 𝑝

𝑚
of degree 𝑚 ≥ 0, the

solution V can be looked for by setting

𝑤 (𝑧) = 𝑧
2

(𝐴
0
+ 𝐴
1
𝑧 + ⋅ ⋅ ⋅ + 𝐴

𝑚
𝑧
𝑚
) , (A.5)

with 𝐴
𝑖
∈ R for 𝑖 = {1, . . . , 𝑚}.

Acknowledgments

The authors were supported by the “Polo delle Scienze e delle
Tecnologie,” University of Naples Federico II, through the
research project FARO. Useful hints and precious comments
by anonymous reviewers are also gratefully acknowledged.

References

[1] Q. Wang and K. M. Liew, “Application of nonlocal continuum
mechanics to static analysis of micro- and nano-structures,”
Physics Letters A, vol. 363, no. 3, pp. 236–242, 2007.

[2] M. Aydogdu, “A general nonlocal beam theory: its application
to nanobeam bending, buckling and vibration,” Physica E, vol.
41, no. 9, pp. 1651–1655, 2009.
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