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Abstract. A nonlocal elastic behaviour of integral type is modeled assuming that the 
nonlocality lies in the constitutive relation. The diffusion processes of the nonlocality are 
governed by an integral relation containing a recently proposed symmetric spatial weight 
function expressed in terms of an attenuation function. Starting from the variational 
formulation associated with the structural boundary-value problem in the context of nonlocal 
elasticity, a nonlocal finite element model is proposed and a 1D example is proposed. 
 
 
1 INTRODUCTION 

It is well-known that one of the main drawbacks of local elasticity consists in the fact that 
many problems, such as sharp crack-tip in continuum fracture mechanics, lead to stress 
singularities in classical elastic theories.  

A possible solution consists in considering a continuum approach in which there are 
information regarding the behaviour of the material microstructure by assuming that an elastic 
material can transmit information to neighbouring points within a certain distance. Such a 
distance is the internal length scale and is an essential material parameter which accounts for 
nonlocal effects in the continuum. Nonlocal variables turn then out to be weighted average of 
the corresponding local variables over the material points of the structure and the internal 
length controls the weighting process related to a state variable at a given point.  

A continuum theory for elastic material with long range cohesive forces can be found in 
the pioneristic work of Kröner. A nonlocal elastic theory is presented by Eringen but a 
simplified and more effective nonlocal theory is contributed in [1] by assuming that 
nonlocality appears only in the constitutive relation. It is shown that several problems related 
to stress singularities in local elasticity, such as crack-tip problems, disappear by adopting the 
nonlocal theory. An elastic model in a geometrically linear range endowed with the nonlocal 
elastic material model is dealt with in [2] in which the extension to nonlocal linear elasticity 
of the classical principles of the total potential energy, complementary energy and mixed Hu-
Washizu principle are also provided.  

In the present paper, starting from the nonlocal elastic constitutive model proposed by 
Eringen and co-workers, the thermodynamic framework and the boundary-value problem for 
nonlocal elasticity are formulated and the complete set of nonlocal mixed variational 
principles is then provided. A recently proposed, in the context of damage mechanics, 
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symmetric spatial weight function which preserves constant fields is considered. A firm 
variational basis to the nonlocal model is provided. A consistent symmetric nonlocal finite 
element procedure is then derived starting from the nonlocal counterpart of the displacement-
based variational formulation. A piecewise homogeneous bar is solved by the recourse to the 
proposed nonlocal finite element method for an imposed displacement and different 
attenuation functions. The solutions obtained are in a good agreement each other and no 
pathological behaviours at the boundary are present.  

 

2 NONLOCAL ELASTICITY 
The nonlocal elastic model is based on the idea that the long range forces arising in a 

homogeneous isotropic elastic structure are described by the following constitutive relation 
[3,4]: 

yyyxxxx dWRR ))((),())(())(()( εε EE 


   (1) 

The linear regularization operator R transforms the local stress field σ into the related 
nonlocal stress   since its value at the point x of the body Ω depends on the entire field σ. In 
linear isotropic elasticity, the elastic operator is E=K(11)+2GI* where K and G denote the 
bulk and the shear moduli respectively, I*=I-1/3(11) is the fourth-order deviatoric 
projection tensor being I and 1 the fourth-order and the second-order identity tensors 
respectively. 

From a mechanical standpoint, the space weight function W describes the mutual long-
range elastic interaction. The function W is positive, have its maximum for x=y and decreases 
monotonically and rapidly to zero approaching the boundary of the interaction zone. The 
space weight function W vanishes, or it approaches to zero, for ║x-y║≥r where r is the chosen 
influence distance,  

A nonlocal behavior is present for high space variation of the local stress σ so that it results 
R=I for uniform fields σ being I the identity operator. Accordingly the weight function W 
must fulfill the normalizing condition: 

1),( 


yyx dW  (2) 

for any x in Ω. In order to impose such a condition, also for points close to the boundary of 
the body in which the interaction zone is deprived of a contribution, the following expression 
is considered in the sequel: 
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which is similar to the one proposed in [5] within the context of nonlocal damage. In the 
equation (3), V is the representative volume: 

yyxx dgV 


 ),()( , (4) 

V∞ is the value assumed by the representative volume V for an unbounded body, the symbol 
δ(x,y) denotes the Dirac delta distribution and α is an adimensional scalar parameter. The 
scalar function g(x,y) is a symmetric attenuation function. 
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Due to the symmetry of the weight function W, the regularization operator is self-adjoint, 
i.e. R=R′ where R′ denotes the dual operator. 
 

3 THERMODYNAMIC FRAMEWORK 
Let us analyze the thermodynamic framework for the nonlocal elastic model. The first 

principle of thermodynamics (see e.g. [6]) for a nonlocal behaviour can be formulated as 
follows: 

xxxx dQd)e  
 )(,(    (5) 

where e is the internal energy density depending on strain ε and entropy s. The heat supplied 
to an element of volume is dQ/dt= - divq being q the heat flux and “div” is the divergence 
operator. 

The relation (5) can be written pointwise as follows: 
)((((( xxxxx Q)P)*))e     (6) 

where the nonlocality residual function P takes into account the energy exchanges between 
neighbor particles [7]. The residual P fulfils the insulation condition: 

0(  xx d)P  (7) 

since the body is a thermodynamically isolated system with reference to energy exchanges 
due to nonlocality. 

The second principle of thermodynamics is enforced in its classical pointwise form: 

0
(
(((div(( 

)T
)*)T)))Ts

x
xxxxx qq  (8) 

everywhere in Ω where ds/dt is the internal entropy production rate per unit volume and T is 
the absolute temperature. The symbol  denotes the gradient operator. 

The thermodynamic laws (6) and (8) yield the non-negative dissipation at a given point of 
the body: 

0
(
((((((((( 

)T
)*)T)T)s-)P)-)*))D

x
xxxxxxxxx q   (9) 

where  = e - sT is the free energy. 
Considering isothermal processes, the inequality (9) becomes: 

0(((((  )P)-)*))D xxxxx  . (10) 
The free energy function at a point x of the body Ω is defined according to the relation: 

)(*))((
2
1))( xxx  ER . (11) 

A direct evaluation shows that, for a piecewise homogeneous material, the operators R and 
E commute with respect to the scalar product in L²(Ω) so that the following equality holds 
<REε1, ε2> = <ε1, REε2> for any strain ε1 and ε2. 

The body energy dissipation L follows from the integration of (10) to get: 
0(   xx d)-,L  . (12) 

Note that the global free energy is the functional of the strain ε obtained by integrating the 
specific free energy (11) over the whole domain of the body: 
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 ,Rd E
2
1))(()   xx  (13) 

and the complementary potential turns then out to be the quadratic functional: 

   1,
2
1)* -RE . (14) 

Recalling the equality (13), the body energy dissipation (12) becomes: 
0   ,R, E . (15) 

The relation (15) must hold for any admissible deformation mechanism so that, following 
widely used arguments [6], the following state law is obtained: 

))(()(() xxx  d)R  E . (16) 
It is then apparent that the relation (15) holds as an equality. Moreover the dissipation (10) 

can be viewed as the integrand of (15) so that the inequality (10) vanishes according to the 
reversible nature of the model: 

0(((((  )P)-)*))D xxxxx   (17) 
and the explicit expression for the nonlocality residual function at a given point of the body  is 
given by: 

    )*)R-)*)R)*)))P xxxxxxxx ((
2
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2
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Finally the nonlocal elastic relation can be expressed in the following equivalent forms in 
terms of the free energy functional Φ and its conjugate Φ*: 

 ,)()()(d)(d  **  (19) 

where the last equality represents the Fenchel’s relation. 
 

4. THE NONLOCAL ELASTIC STRUCTURAL PROBLEM 
In order to develop the structural model, it is convenient to formulate the constitutive 

relations in a global form, i.e. in terms of quantities pertaining to the whole structure. In the 
sequel such quantities will be referred to as fields. For a continuous model such fields are 
functionals defined in the domain Ω occupied by the body and belong to suitable functional 
spaces. 

Local subdifferential (or differential) relations, enforced almost everywhere in Ω, can be 
equivalently expressed in global form by integrating the relevant functions over the domain 
Ω. 

It can be proved that if the local function is convex (concave), the corresponding global 
one turn out to be convex (concave) in the corresponding fields. An analogous definition 
holds for any other functional to be defined over the whole body . 

Let u U be the displacement field which is square integrable in Ω together with its 
distributional derivatives up to the order m [8]. Conforming displacement fields fulfill linear 
constraint conditions and belong to a closed linear subspace LU.  

The kinematic operator B is a bounded linear operator from U to the Hilbert space of 
square integrable strain fields εD. 

Denoting by F the subspace of external forces, which is dual of U, the continuous operator 
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B′ is the equilibrium operator and is dual of B. Let ℓ={t,b}, belonging to F, be the load 
functional where t and b denote the tractions and the body forces. 

In a geometrically linear range, the compatibility condition and the equilibrium equation 
are given by: 

   ', BfwuB  . (20) 

The external relation between reactions rF and displacements uU can be given in terms 
of two conjugate concave functionals Υ and Υ* by means of the following equivalent 
relations: 

urruruur ** ,)()(  )()(  (21) 

where the symbol ∂ denotes the superdifferential of concave functionals [9]. The last equality 
represents the Fenchel’s relation. 

In the case of external frictionless bilateral constraints with non-homogeneous boundary 
conditions, the admissible set of displacements is given by the subspace L=w+Lo where Lo 
collects conforming displacements which satisfy the homogeneous boundary conditions. Then 
the functional Υ turns out to be the indicator of Lo, i.e. Υ(u)=0 if u-w belongs to Lo and - ∞ 
otherwise. 

The relations governing the nonlocal elastic structural problem for a given load history ℓ(t) 
are: 
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The variational formulation in the complete set of the state variables is provided by the 
next statement. 
Proposition 1 - The set of state variables ), ru ,,  is a solution of the saddle problem: 

)M( ru
ur

,,,statmaxmin
,




 (23) 

where: 
  urwuBrru ,,)()(,,, *   )M(  (24) 

if and only if it is a solution of the nonlocal elastic structural problem (22). 
The variational formulation in terms of displacements u is obtained by enforcing the 

external constraint relation (22)4 in terms of the Fenchel’s relation (21)3 and the compatibility 
condition (22)2 in the expression of the functional M to get: 
Proposition 2 - The displacement u  is a solution of the convex optimization problem: 

)P(u
u

min  (25) 

where: 
   uuwuBu ,)( )P(  (26) 

if and only if it is a solution of the nonlocal elastic structural problem (22). 
The potential P is the nonlocal counterpart of the classical total potential energy in 

elasticity. 
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5. A NONLOCAL FINITE ELEMENT 
The nonlocal total potential energy functional P can be adopted in order to develop a finite 

element procedure for the proposed nonlocal elastic model. Using a conforming finite element 
discretization, let Ωe (e=1,…,N) be the domain decomposition induced by the meshing of the 
domain Ω. The unknown displacement field v(x) is given, for each element, in the 
interpolated form vh

e(x)=Ne(x)qe with x Ωe where qe is the vector collecting the nodal 
displacement of the e-th finite element and Ne(x) is the chosen shape-function matrix. 

The conforming displacement field vh={vh¹, vh²,…, vh
N} satisfies the homogeneous 

boundary conditions and the interelement continuity conditions. The rigid-body displacements 
are ruled out by imposing the conformity requirement. The displacement parameters qe can be 
expressed in terms of nodal parameters q by means of the standard assembly operator Ae 
according to the parametric expression qe=Aeq. The interpolated counterpart of the nonlocal 
total potential energy P can be obtained by adding up the contributions of each non-assembly 
element and imposing the conforming requirement to the interpolating displacement to get: 

uwvBwvEBv ,)(),(
2
1
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with vhLo. The interpolated nonlocal total potential energy Ph can then be explicitly written 
as follows: 
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where Se=∂Ω∩∂Ωe.  
The matrix form of the discrete problem is obtained by imposing the stationarity of Ph with 

respect to vh which is given by: 
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for any δvh

e Lo. 
Defining the component submatrices and subvectors in the form: 
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and 
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the matrix form of the discrete problem is: 
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The integration appearing in (30)1 is performed elementwise so that Kee
l turns out to be the 

standard stiffness matrix while Kee
nl and Kem

nl in (30) turn out to be the nonlocal symmetric 
stiffness matrices reflecting the nonlocality of the model. The elements of the matrix Kem

nl 
vanish if the related elements are too far with respect to the influence distance r. Accordingly 
the matrix Kem

nl is banded with a band width larger than in the standard stiffness matrix. 
Hence the solving linear equation system follows from (29) and is given by: 

fqKKKq  )( nll  (33) 
where the global stiffness matrix K is symmetric and positive definite. 

In the case of a local elastic behaviour, the nonlocal terms disappear and the solving 
equation system reduces to the standard local finite element method given by Klq=fl. 

 

6. A COMPUTATIONAL EXAMPLE 
The elastic bar reported in Fig. 1 is solved by the proposed nonlocal finite element 

approach.  

w  
L/2 L/2 

 
Figure 1: A one-dimensional bar in tension. 

The bar has a unit cross-section and a length L=100 cm. It is clamped at the end x=0 and is 
subjected to a given displacement w at the other end x=L. The bar is piecewise homogeneous 

 7



503

F. Marotti de Sciarra 

and the Young modulus has the following expression E(x)= βEo for 0≤x≤L/2 and 
E(x)=Eo=21×104 MPa for L/2≤x≤L with the parameter β varying from 0 to 1. Three different 
weight functions W1, W2 and W3 of the type (3) are employed in which the attenuation 
function g is, respectively, given by the Gauss-like function: 













 
 2

2

1 2
exp

2
1),(

ll
g

yx
yx


 (34) 

the bi-exponential function: 
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and the bell-shaped polynomial function: 
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where it is assumed l=r/6. The internal length is l=2 cm, the influence distance is r=12 cm 
and the material parameter is α=-1. The imposed displacement at the end x=L is w=0.2 cm. 

A series of computations have been accomplished by using the above data, the three space 
weight functions W1, W2, W3 and different jumps of the elastic modulus provided by the 
parameter β. 

In the case of a homogeneous material, i.e. for β=1, strains and stresses coincide to the 
classical solution for homogeneous media independently of the internal length. 

The strain plot ε are provided in Figs. 2 for different values of β.  

 





 
 (a) (c) (b) 

Figure 2: Strain plots of the bar in tension for different attenuation functions g. 
 

The relations (34)-(36) of the attenuation function g are considered in the expressions of 


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the symmetric function W1, W2, W3 and different values of the ratio β are also addressed. In 
Fig. 2a the homogeneous bar with E1 = E2 (β = 1) is considered. In Fig. 2b the piecewise 
homogeneous bar with E1 = 0.8Eo and E2 = Eo (β = 0.8) is solved and in Fig. 2c the piecewise 
homogeneous bar with E1 = 0.4Eo and E2 = Eo (β = 0.4) is considered. 

As expected, the solution for β=1 reported in Fig. 2(a) coincides to the local one and the 
value ε  = wh/L = 2×10-3 is attained independently of the choice of the attenuation function g 
in the expression of the space weight function W. On comparing the nonlocal behaviour with 
the local one in the Figs. 2(b) and 2(c) for different values of the ratio β, it is apparent the 
presence in the nonlocal response of a narrow layer around the middle section of the bar in 
which the strain ε smoothly varies with more or less slope depending on the considered 
attenuation function g.  

The comparison shows that the use of the bell-shaped and Gauss-like attenuation functions 
in the expression of the spatial weight function W provides the best fit of the constant strain 
for different values of β. Moreover, the Gauss-like function presents a narrow layer around 
the middle section of the bar with a sharper slope than the one corresponding to the bell-
shaped attenuation function. 

The displacement profiles corresponding to the considered values of β are reported in Fig. 
3 in which the discontinuity in the middle section of the bar is apparent in the case of 
nonhomogeneity. 

 
Figure 3: Displacement plots of the bar in tension for different values of the ratio β. 

 
The stress plots are reported in Fig. 4. 

 



Figure 4: Stress plots of the bar in tension for different attenuation functions g. 
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 10

The stress is evaluated for a piecewise homogeneous bar with E1 = 0.8Eo and E2 = Eo (β = 
0.8) considering the attenuation functions g (34)-(36) in the expression of the symmetric 
function W. 

No boundary effects are present in the stress field in a layer near the end cross-sections. 
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