301 research outputs found

    Optical oxygen sensing with artificial intelligence

    Get PDF
    Luminescence-based sensors for measuring oxygen concentration are widely used in both industry and research due to the practical advantages and sensitivity of this type of sensing. The measuring principle is the luminescence quenching by oxygen molecules, which results in a change of the luminescence decay time and intensity. In the classical approach, this change is related to an oxygen concentration using the Stern-Volmer equation. This equation, which in most cases is non-linear, is parameterized through device-specific constants. Therefore, to determine these parameters, every sensor needs to be precisely calibrated at one or more known concentrations. This study explored an entirely new artificial intelligence approach and demonstrated the feasibility of oxygen sensing through machine learning. The specifically developed neural network learns very efficiently to relate the input quantities to the oxygen concentration. The results show a mean deviation of the predicted from the measured concentration of 0.5% air, comparable to many commercial and low-cost sensors. Since the network was trained using synthetically generated data, the accuracy of the model predictions is limited by the ability of the generated data to describe the measured data, opening up future possibilities for significant improvement by using a large number of experimental measurements for training. The approach described in this work demonstrates the applicability of artificial intelligence to sensing technology and paves the road for the next generation of sensors

    Generalized Quantile Treatment Effect: A Flexible Bayesian Approach Using Quantile Ratio Smoothing

    Get PDF
    We propose a new general approach for estimating the effect of a binary treatment on a continuous and potentially highly skewed response variable, the generalized quantile treatment effect (GQTE). The GQTE is defined as the difference between a function of the quantiles under the two treatment conditions. As such, it represents a generalization over the standard approaches typically used for estimating a treatment effect (i.e., the average treatment effect and the quantile treatment effect) because it allows the comparison of any arbitrary characteristic of the outcome's distribution under the two treatments. Following Dominici et al. (2005), we assume that a pre-specified transformation of the two quantiles is modeled as a smooth function of the percentiles. This assumption allows us to link the two quantile functions and thus to borrow information from one distribution to the other. The main theoretical contribution we provide is the analytical derivation of a closed form expression for the likelihood of the model. Exploiting this result we propose a novel Bayesian inferential methodology for the GQTE. We show some finite sample properties of our approach through a simulation study which confirms that in some cases it performs better than other nonparametric methods. As an illustration we finally apply our methodology to the 1987 National Medicare Expenditure Survey data to estimate the difference in the single hospitalization medical cost distributions between cases (i.e., subjects affected by smoking attributable diseases) and controls.Comment: Published at http://dx.doi.org/10.1214/14-BA922 in the Bayesian Analysis (http://projecteuclid.org/euclid.ba) by the International Society of Bayesian Analysis (http://bayesian.org/

    Multi-task learning for multi-dimensional regression : application to luminescence sensing

    Get PDF
    The classical approach to non-linear regression in physics is to take a mathematical model describing the functional dependence of the dependent variable from a set of independent variables, and then using non-linear fitting algorithms, extract the parameters used in the modeling. Particularly challenging are real systems, characterized by several additional influencing factors related to specific components, like electronics or optical parts. In such cases, to make the model reproduce the data, empirically determined terms are built in the models to compensate for the difficulty of modeling things that are, by construction, difficult to model. A new approach to solve this issue is to use neural networks, particularly feed-forward architectures with a sufficient number of hidden layers and an appropriate number of output neurons, each responsible for predicting the desired variables. Unfortunately, feed-forward neural networks (FFNNs) usually perform less efficiently when applied to multi-dimensional regression problems, that is when they are required to predict simultaneously multiple variables that depend from the input dataset in fundamentally different ways. To address this problem, we propose multi-task learning (MTL) architectures. These are characterized by multiple branches of task-specific layers, which have as input the output of a common set of layers. To demonstrate the power of this approach for multi-dimensional regression, the method is applied to luminescence sensing. Here, the MTL architecture allows predicting multiple parameters, the oxygen concentration and temperature, from a single set of measurements

    I do it (also) for me: a qualitative study on the identity aspects underlying consumption on second-hand fashion apps

    Get PDF
    The topic of sustainable consumption assumes a central importance in the fashion sector, since it is one of the industries that has the most negative impact on the environment. Considering the latest buying trends, this study aims to investigate in depth which identity aspects play a significant role in motivating the purchase of second-hand fashion products on apps. We conducted an exploratory investigation aimed at identifying the main identity aspects underlying this specific type of purchase. In-depth interviews were conducted, and the data were analyzed from an identity-based motivation perspective. Findings showed that there is a link between sustainable consumption and identity, as both personal and social aspects linked to identity motivate consumers to purchase sustainably. In other words, they can be driven not only by social motives (collective action, pro-environmental engagement, altruism, and sharing) but also by personal ones (self-expression, utilitarianism, hedonism, and personal beliefs). Limitations, insights for further research, and managerial implications are also discussed in the paper

    New Metric Formulas that Include Measurement Errors in Machine Learning for Natural Sciences

    Get PDF
    The application of machine learning to physics problems is widely found in the scientific literature. Both regression and classification problems are addressed by a large array of techniques that involve learning algorithms. Unfortunately, the measurement errors of the data used to train machine learning models are almost always neglected. This leads to estimations of the performance of the models (and thus their generalisation power) that is too optimistic since it is always assumed that the target variables (what one wants to predict) are correct. In physics, this is a dramatic deficiency as it can lead to the belief that theories or patterns exist where, in reality, they do not. This paper addresses this deficiency by deriving formulas for commonly used metrics (both for regression and classification problems) that take into account measurement errors of target variables. The new formulas give an estimation of the metrics which is always more pessimistic than what is obtained with the classical ones, not taking into account measurement errors. The formulas given here are of general validity, completely model-independent, and can be applied without limitations. Thus, with statistical confidence, one can analyze the existence of relationships when dealing with measurements with errors of any kind. The formulas have wide applicability outside physics and can be used in all problems where measurement errors are relevant to the conclusions of studies

    Superconducting Gap and Pseudogap in Bi-2212

    Full text link
    We present results of Raman scattering experiments in differently doped Bi-2212 single crystals. Below Tc the spectra show pair-breaking features in the whole doping range. The low frequency power laws confirm the existence of a dx2−y2d_{x^2-y^2}-wave order parameter. In the normal state between Tc and T* = 200K we find evidence for a pseudogap in B2g symmetry. Upon doping its effect on the spectra decreases while its energy scale appears to be unchanged.Comment: 2 pages, 1 EPS figure; LT22 Proceedings to appear in Physica

    Mn4+-doped magnesium titanate : a promising phosphor for self-referenced optical temperature sensing

    Get PDF
    Phosphors based on magnesium titanate activated with Mn4+ ions are of great interest because, when excited with blue light, they display a strong red-emitting luminescence. They are characterized by a luminescence decay which is strongly temperature dependent in the range from -50°C to 150°C, making these materials very promising for temperature sensing in the biochemical field. In this work, the optical and thermal properties of the luminescence of Mg2TiO4 are investigated for different Mn4+ doping concentrations. The potential of this material for temperature sensing is demonstrated by fabricating a fiber optic temperature microsensor and by comparing its performance against a standard resistance thermometer. The response of the fiber optic sensor is exceptionally fast, with a response time below 1 s in the liquid phase and below 1.1 s in the gas phase

    GAMMA SHAPE MIXTURES FOR HEAVY-TAILED DISTRIBUTIONS

    Get PDF
    An important question in health services research is the estimation of the proportion of medical expenditures that exceed a given threshold. Typically, medical expenditures present highly skewed, heavy tailed distributions, for which a) simple variable transformations are insufficient to achieve a tractable low- dimensional parametric form and b) nonparametric methods are not efficient in estimating exceedance probabilities for large thresholds. Motivated by this context, in this paper we propose a general Bayesian approach for the estimation of tail probabilities of heavy-tailed distributions,based on a mixture of gamma distributions in which the mixing occurs over the shape parameter. This family provides a flexible and novel approach for modeling heavy-tailed distributions, it is computationally efficient, and it only requires to specify a prior distribution for a single parameter. By carrying out simulation studies, we compare our approach with commonly used methods, such as the log-normal model and non parametric alternatives. We found that the mixture-gamma model significantly improves predictive performance in estimating tail probabilities, compared to these alternatives. We also applied our method to the Medical Current Beneficiary Survey (MCBS), for which we estimate the probability of exceeding a given hospitalization cost for smoking attributable diseases. The R software that implements the method is available from the authors

    Generalized Quantile Treatment Effect

    Get PDF
    We propose a new general approach for estimating the effect of a binary treat-ment on a continuous and potentially highly skewed response variable, the generalized quantile treatment effect (GQTE). The GQTE is defined as the difference between a function of the quantiles under the two treatment conditions. As such, it represents a generalization over the standard approaches typically used for estimating a treatment effect (i.e., the average treatment effect and the quantile treatment effect) because it allows the comparison of any arbitrary characteristic of the outcome’s distribution under the two treatments. Following (Dominici et al., 2005), we assume that a pre-specified transformation of the two quantiles is modeled as a smooth function of the percentiles. This assumption allows us to link the two quantile functions and thus to borrow information from one distribution to the other. The main theoretical con-tribution we provide is the analytical derivation of a closed form expression for the likelihood of the model. Exploiting this result we propose a novel Bayesian inferential methodology for the GQTE. We show some finite sample properties of our approach through a simulation study which confirms that in some cases it performs better than other nonparametric methods. As an illustration we finally apply our methodology to the 1987 National Medicare Expenditure Survey data to estimate the difference in the single hospitalization medical cost distributions between cases (i.e., subjects affected by smoking attributable diseases) and controls
    • …
    corecore