
Johns Hopkins University, Dept. of Biostatistics Working Papers

12-1-2006

GAMMA SHAPE MIXTURES FOR HEAVY-
TAILED DISTRIBUTIONS
Sergio Venturini
Universita Bocconi, Milan Italy, sergio.venturini@unibocconi.it

Francesca Dominici
Johns Hopkins Bloomberg School of Public Health, Department of Biostatistics

Giovanni Parmigiani
The Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins University & Department of Biostatistics, Johns Hopkins
Bloomberg School of Public Health

This working paper is hosted by The Berkeley Electronic Press (bepress) and may not be commercially reproduced without the permission of the
copyright holder.
Copyright © 2011 by the authors

Suggested Citation
Venturini, Sergio; Dominici, Francesca; and Parmigiani, Giovanni, "GAMMA SHAPE MIXTURES FOR HEAVY-TAILED
DISTRIBUTIONS" (December 2006). Johns Hopkins University, Dept. of Biostatistics Working Papers. Working Paper 124.
http://biostats.bepress.com/jhubiostat/paper124

http://biostats.bepress.com/jhubiostat


Gamma Shape Mixtures for Heavy-tailed Distributions

S. Venturini1, F. Dominici2, G. Parmigiani3

December 1, 2006
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Abstract

An important question in health services research is the estimation of the proportion

of medical expenditures that exceed a given threshold. Typically, medical expenditures

present highly skewed, heavy tailed distributions, for which a) simple variable trans-

formations are insufficient to achieve a tractable low- dimensional parametric form

and b) nonparametric methods are not efficient in estimating exceedance probabilities

for large thresholds. Motivated by this context, in this paper we propose a general

Bayesian approach for the estimation of tail probabilities of heavy-tailed distributions,

based on a mixture of gamma distributions in which the mixing occurs over the shape

parameter. This family provides a flexible and novel approach for modeling heavy-

tailed distributions, it is computationally efficient, and it only requires to specify a

prior distribution for a single parameter. By carrying out simulation studies, we com-

pare our approach with commonly used methods, such as the log-normal model and

non parametric alternatives. We found that the mixture-gamma model significantly

improves predictive performance in estimating tail probabilities, compared to these

alternatives. We also applied our method to the Medical Current Beneficiary Survey

(MCBS), for which we estimate the probability of exceeding a given hospitalization

cost for smoking attributable diseases. The R software that implements the method is

available from the authors1.
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1 Introduction

There is an extensive health services research literature on developing models for pre-

dicting health costs or health services utilization. These prediction problems are usually

complicated by the nature of the distributions being analyzed: high skewness, heavi-

ness of the right tail, and significant fractions of zeros or token amounts are commonly

encountered. At present, there is no agreement about the best methods to use (see

Mullahy and Manning [29], Kilian et al. [21], Buntin and Zaslavsky [5], Barber and

Thompson [2], Manning and Mullahy [34], Powers et al. [35], Dodd et al. [13]; for a

recent survey see Willan and Briggs [49]).

In important and still open research question is how to best predict the proportion

of (total or single-event related) medical expenditures that will exceed a given threshold

(see for example Briggs and Gray [3], Conwell and Cohen [9]). For example, insurance

companies and governmental health departments are often interested in predicting how

many customers or citizens will ask for a reimbursement above a certain threshold.

Similarly, financial institutions are often interested in estimating the probability of

the potential loss that could take place in the next day, week or month. In all these

situations the parameter of interest is a tail probability of a highly skewed distribution.

Thus it is important to develop methods that do not simply smooth the distribution

of the data, but that are able to perform well from a predictive point of view.

The development of this work has been motivated by an analysis of medical expen-

ditures from the Medicare Beneficiaries Survey (MCBS). We are interested in modeling

the distribution of medical costs paid by the Medicare program for treating smoking

attributable diseases, specifically lung cancer (LC) and coronary heart disease (CHD).

We need to estimate the probability that the hospitalization cost for a smoking at-

tributable disease exceeds a certain value.

MCBS is a continuous, multipurpose survey of a U.S. nationally representative

sample of Medicare beneficiaries (people aged 65 or older, some people under age 65

with disabilities and people with permanent kidney failure requiring dialysis or a kidney

transplant). The central goal of MCBS is to determine expenditures and sources of

payment for all services used by Medicare beneficiaries. The data set includes medical

expenditures for LC or CHD as primary diagnosis for 26,834 hospitalizations of 9,782

individuals for the period 1999-2002. For our analyses, we extract medical expenditures

on the first hospitalization for 7,615 individuals.

A typical assumption in health services research is that medical costs are log-

normally distributed (Zhou et al. [50], Tu and Zhou [47], Zhou et al. [51], Briggs

et al. [4]). In our case, as well as many others, this assumption is not appropriate,
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since the distribution of log-transformed expenditures is still far from being symmetric.

For this reason, new methods have been recently proposed, especially for estimating

the cost mean difference between cases and controls (Johnson et al. [20], Dominici

et al. [14], Dominici and Zeger [15]). However few methods have been proposed for

modeling the entire distribution and for prediction.

Skewed distributions typically arise in situations where few large values of the quan-

tity under examination are present. It is well known that these observations heavily in-

fluence the results of statistical analysis. The remedies proposed in the health research

literature are either to transform the data (see Duan [16], Mullahy [33], Manning[28],

Mullahy and Manning [29]) or to use robust methods (see Conigliani and Tancredi [8],

Cantoni and Ronchetti [6]). A different approach in modeling the medical costs dis-

tribution that has not been explored in the literature is to use a mixture distribution.

Mixture models are parametric models which are flexible enough to represent a large

spectrum of different phenomena. The mixture models literature is extensive (for gen-

eral overviews, see Titterington et al. [46], Lindsay [24], McLachlan and Peel [32]; for a

comprehensive list of applications see Titterington [45]). Particularly relevant for this

paper is the well-developed parametric Bayesian literature on mixture distributions

(see Diebolt and Robert [12], Robert [37], Roeder and Wasserman [41], Marin et al.

[30]).

The purpose of this paper is to propose an innovative Bayesian approach for density

estimation of very skewed distributions and for predicting the proportion of medical

expenditures that exceed a given threshold. We model the distribution of medical

expenditures by use of a mixture of gamma density functions with unknown weights.

Using this model, we then estimate the tail probability P (Y > k), for different values of

k. Each gamma distribution in the mixture is indexed by a component-specific shape

parameter and a single unknown scale parameter θ. This parametrization allows to

create a very parsimonious model with just one parameter for all the gamma compo-

nents, plus the ordinary set of mixture weights. Moreover it overcomes the well-known

identifiability problems that always affect any mixture model estimation because this

parametrization automatically provides an ordering of the mixture components (for a

recent survey on identifiability problems in Bayesian mixture modeling see Jasra et

al. [19]). We assume that the number of mixture components in our model is known.

We provide practical advice on how to choose it, as well as the hyperparameters of

the prior on the scale parameter. Based on a simulation study we illustrate that our

method has a better predictive performance compared to standard approaches.

In Section 2 we introduce the gamma shape mixture model, the estimation ap-

proach, and provide guidance on how to choose prior hyperparameters. In Section 3

3
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we illustrate the results of the simulation study and the data analysis. Section 4 con-

tains a discussion and concluding remarks. A final appendix contains technical details

about the Gibbs sampler used.

2 The Gamma Shape Mixture Model

In this section we introduce the gamma shape mixture (GSM) model. We start by

presenting the likelihood and an overview of its main properties. In particular we show

that the GSM model does not suffer from identifiability problems common to mixture

distributions. We then introduce the prior distribution and posterior inferences.

2.1 Likelihood and Prior Structure

Let Y be a positive random variable, for example non-zero medical expenditures. The

GSM model is defined as

f(y|π1, . . . , πJ , θ) =

J∑

j=1

πjfj(y|θ) , (1)

where fj(y|θ) = θj

Γ(j)y
j−1e−θy, the density function of a gamma Ga(j, θ) random

variable. We assume that the number of components J is known and fixed, while

π = (π1, . . . , πJ) is an unknown vector of mixture weights. Discussion on how to

choose J will be provided later. In what follows, we denote (1) as GSM (π, θ|J).

The GSM model has the following nice properties:

1. 1
θ

is a scale parameter (Lehmann and Casella [22]) for the whole model, since

f(y|π1, . . . , πJ , θ) = θ · f(θ · y|π1, . . . , πJ , 1) .

2. Its moments are convex combinations of the moments of the Yj |θ ∼ fj(y|θ) mix-

ture components, so that the m-th moment is given by

E [Y m|θ] =

J∑

j=1

πj E
[
Y m

j |θ
]

=

J∑

j=1

πj

∏m

ℓ=1 (j + ℓ − 1)

θm
.

A further issue related to mixture modeling is label switching, that is invariance to

permutations of the components’ indexes (see Jasra et al. [19]). A typical solution is

to impose an identifiability constraint, usually an ordering of either the components

means or the variances or the mixture weights (see Aitkin and Rubin [1]). A nice
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feature of the GSM model (1) is that automatically imposes a constraint on both the

means and the variances, since

1

θ
<

2

θ
< · · · <

J − 1

θ
<

J

θ
,

1

θ2
<

2

θ2
< · · · <

J − 1

θ2
<

J

θ2
.

Therefore the model is always identified and label switching is not a concern.

We assume that θ and π are independent a priori and we specify the following

conjugate priors, that is

θ ∼ Ga(α, β),

π = (π1, . . . , πJ) ∼ DJ

(
1

J
, . . . ,

1

J

)
,

We choose the prior hyperparameters of the Dirichlet prior to favor selecting only a

small subset of the mixture weights with high prior probability.

Given a sample y = (y1, . . . , yn) of iid observations from (1), the likelihood is given

by

L (π, θ|y) =

n∏

i=1

J∑

j=1

πj fj (yi|θ) . (2)

Unfortunately this expression is untreatable because it includes Jn different terms

(Marin et al. [30]). To overcome this hurdle we use the so called missing data repre-

sentation of the mixture (Diebolt and Robert [10], [12]).

Consider a random sample y = (y1, . . . , yn) from model (1). It is possible to

associate to each yi an integer xi between 1 and J that identifies the component of

the mixture generating observation yi. Thus the variable xi takes value j with prior

probability πj , 1 ≤ j ≤ J . The vector x = (x1, . . . , xn) of component labels is the

missing data part of the sample since it is not observed. Figure 1 illustrates this for

our model, highlighting that y is conditionally independent from the mixture weights

π, given the missing data x.

Suppose the missing data x1, . . . , xn were available. Then the model could be

written as

p(y1, . . . , yn|x1, . . . , xn, θ) =
θ

P
n
i=1 xi

∏n

i=1 Γ(xi)

(
n∏

i=1

yxi−1
i

)
e−θ

P
n
i=1 yi . (3)

Thus, using (3) and the priors, the posterior distribution is

p(π1, . . . , πJ , θ|y1, . . . , yn, x1, . . . , xn) ∝




J∏

j=1

π
1
J

+nj−1
j


 θ α+(

P
n
i=1 xi)−1e−(β+

P
n
i=1 yi) θ,

(4)

5
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where nj =
∑n

i=1 I(xi = j), j = 1, . . . , J , and I(·) is the indicator function. The main

consequence of this conditional decomposition is that, for a given missing data vector

x1, . . . , xn, the conjugacy is preserved and therefore the simulation can be performed

conditional on the missing data x1, . . . , xn.

2.2 Posterior calculation

We implement two approaches for estimating the unknown parameters of interests.

In the first approach we estimate the posterior distribution of π, x and θ by using a

Gibbs sampler (details are reported in Appendix). To increase the efficiency, we also

propose a second estimation approach where we integrate out the scale parameter θ

analytically. The advantage of this second strategy is both computational, since the

chain runs in a smaller space, and theoretical, since generally simulated values are less

autocorrelated after partial marginalization (Liu [25], MacEachern [26], MacEachern

et al. [27]).

After having integrated out θ, the full conditional distribution of the mixture

weights is given by

p(π1, . . . , πJ |y1, . . . , yn, x1, . . . , xn) ∝

J∏

j=1

π
1
J

+nj−1
j ,

that is, the DJ

(
1
J

+ n1, . . . ,
1
J

+ nJ

)
Dirichlet distribution. In addition, the full con-

ditional of the i-th missing label is then given by

p(xi|y, x(−i), π) =

J∑

j=1

πj
y

j−1
i

Γ(j)

(α+
P

(−i) xr)
j

(β+
P

n
r=1 yr)

j

∑J

k=1 πk
y

k−1
i

Γ(k)

(α+
P

(−i) xr)
k

(β+
P

n
r=1 yr)

k

I(xi = j) , (5)

where x(−i) is the x = (x1, . . . , xn) vector with the i-th element deleted,
∑

(−i) xr de-

notes the sum of all the component labels except for the i-th one, (n)k is the Pochham-

mer symbol. Moreover, α is constrained to be an integer (see Appendix for a justi-

fication). Note that, the integration of θ implies that the missing data are no longer

independent.

R software implementing this approach is available from the authors2.

2.3 Choice of the Hyperparameters

In this subsection we describe how we choose the values of α and β, the hyperparameters

of the prior on θ, and J , the number of components in the GSM.

2
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Our proposal for choosing the hyperparameters could be described as an informal

empirical Bayes approach since we use summary statistics of the data, like the maxi-

mum and the sum of the observations, to get reasonable values.

It is useful to note first that the mean of model (1) is

µ = E[Y |θ] =
J∑

j=1

πj

j

θ
, (6)

so that we can write

θ =
1

µ

J∑

j=1

πjj (7)

and that the expected value of the full conditional distribution of θ is

E[θ|y, x] =
α +

∑n

i=1 xi

β +
∑n

i=1 yi

=
β

β +
∑n

i=1 yi

·
α

β
+

∑n

i=1 yi

β +
∑n

i=1 yi

·

∑n

i=1 xi∑n

i=1 yi

= ω ·
α

β
+ (1 − ω) ·

x̄

ȳ
, (8)

Equation (7) indicates that θ can be interpreted as the (normalized) weighted average

of the J component labels. Equation (8) indicates that the posterior mean of θ is a

weighted average of α/β and x̄/ȳ where β is the prior sample size and α is the prior

mean of θ. When both α → 0 and β → 0 the prior becomes improper. Then, for a

given value of J , a strategy for choosing α and β is:

1. Calculate the quantity θ̃ = J
max(y1,...,yn) and check that 1

eθ ≤ min(y1, . . . , yn); the

idea is that on average θ should take values that allow the set of gamma distri-

butions in (1) to completely span the range of observed values (the last gamma

distribution should have a mean not smaller than the maximum observation and

the first gamma distribution a mean not greater than the minimum observation).

θ̃ is hence a candidate for the prior mean α
β
.

2. Choose a value for the weight of the prior information ω in (8). Values between

0.2 and 0.5 are usually reasonable choices. Fix β to
ω·

P
n
i=1 yi

1−ω
.

3. Set α by rounding to the closest integer the quantity θ̃ ·β. The rounding is needed

because of the assumption used to get (5).

Concerning the choice of J , the goodness of fit of the GSM is the result of the

interplay among the grids of m-th order moments
(∏m

ℓ=1 ℓ

θm
,

∏m

ℓ=1 (ℓ + 1)

θm
, . . . ,

∏m

ℓ=1 (ℓ + J − 2)

θm
,

∏m

ℓ=1 (ℓ + J − 1)

θm

)
,

7
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and the ordered sequence of observations. These grids should contain sufficient elements

to fit the data, therefore J should be calibrated to the specific set of data under

examination. Generally speaking, a small value of J can create a severe limitation

to the model as the set of densities available in the class being mixed may not be

sufficiently rich with elements that have a large mean. On the other had, too large a

value does not cause serious difficulties as the fit is often robust when there are several

gamma distribution in the class that can serve as building blocks for a particular

mixture component. However, large J can cause numerical problems. Sometimes a

transformation of the data (like a log or a root) can be useful to handle these numerical

issues. In practice, the choice of J may require more than one iteration. Inspection of

the predictive density is a practical diagnostic to identify misspecifications of J .

3 Results

In this section we carry out a simulation study to assess the predictive performance of

the GSM model in estimating the right tail of the medical expenditures with respect

to common alternatives. In addition, we apply our methods to the MCBS data for

estimating the risk for persons affected by smoking attributable diseases to exceed a

given medical costs threshold in a single hospitalization.

3.1 Simulation design

From the complete MCBS data, we extract expenditure data on hospitalizations in

which the first diagnosis has been either CHD or LC (or both), for a total of 7, 615

hospitalizations. Tables 1 and 2 report a brief summary of the dataset. From this

population, we drew 500 sub-samples, the training sets, of size equal to 10% of the

original sample. The remaining 90% constitute the test sets.

On each training set we calculate four estimates of the tail probability p̂ = P (y∗ > k|y)

using the following approaches:

• the empirical distribution function (EDF),

• a log-normal distribution (LN),

• a normal mixture distribution (MN),

• a gamma shape mixture distribution (GSM).

For EDF, LN and MN, the estimators of the tail probability are all known. For the

MN, we estimate the tail probability by using the mclust package in R. For the GSM,

8
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the estimator of the tail probability is defined as

P(y∗ > k|y) =

∫
P (y∗ > k|y, θ, π)f(θ, π|y) dθ dπ . (9)

This predictive probability can be estimated from Gibbs sampling realizations by the

rao-blackwellized estimator:

P̂(y∗ > k|y) =
1

M

M∑

m=1

P

(
y∗ > k

∣∣∣θ(m), π(m)
)

=
1

M

M∑

m=1

J∑

j=1

π
(m)
j

[
1 − Fj

(
k
∣∣∣θ(m)

)]
,

where Fj(·|θ) is the distribution function of a Ga(j, θ) random variable.

On each test set the sample proportion #{i : yi > k}/ntest is calculated and the

entire analysis is repeated for the following values of the medical cost threshold k:

$10,000, $15,000, $20,000, $30,000, $50,000 and $80,000 (higher threshold values are

too rare to be included in the analysis, see Table 2).

The data are transformed using a cubic root. For any random variable X and

strictly monotonic function g(·),

P (X > k) = P (g(X) > g(k)) ,

so no bias is introduced in the analysis, at least for our purposes. Figure 2 reports

graphical summaries for both the untransformed and transformed MCBS data.

The parameters chosen for the simulation are J=200, α = 12, 380, β = 3, 420,

5, 000 iterations (1, 000 of which for burn-in). These have been chosen following the

indications provided in Section 2.3.

3.2 Simulation results

For each estimation method and each k, Figure 3 presents in panel (a) the relative

mean squared errors, defined by (mseEDF − mseT ) /mseEDF, where mseT indicates the

mean squared error for the tail probability P(y∗ > k|y) estimated with T , and in panel

(b) the relative bias (E (T ) − pTRUE) /pTRUE, where pTRUE = #{i : yi > k}/n for the

whole sample, both in percentage. Negative values of the relative mean squared error

imply that the EDF estimator is preferred, while positive values are in favor of the

compared estimator.

For almost all the medical expenditure thresholds the GSM is more efficient than

the estimator based on the empirical distribution function. As expected, we observe a

9
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trend for the efficiency to increase with the threshold, up to a 27% improvement for

the highest threshold.

The tail probability estimator based on the log-normal distribution performs poorly.

Its mean squared error relative to the EDF estimator is below −100% for all the

thresholds, with the worst performance for hospitalization costs above 20, 000$. This

result is important practically since many models in health services research and health

economics are based on the assumption that the medical expenditures can be handled

using log-normal distributions.

Also the estimator based on the mixture of normal distributions performs worse

than the EDF, and the performance worsens as the threshold increases. This finding

implies that, to overcome the problems with the log-normal distribution, it does not

suffice to use any mixture.

Figure 3(b) reports the relative biases, showing that overall the mixture of gamma

distributions is slightly biased, but less so than the other methods. Once again, the

estimator based on the log-normal distribution is more biased than the alternatives,

and it almost always underestimates the tail probability for the reference population.

The bias increases systematically (in absolute value) with the thresholds, indicating

that the log-normal distribution is not sufficiently heavy-tailed to mimic the right tail

of these data, despite the prior cubic root transformation.

Figure 4 allows a further comparison of the GSM with the other models. Each

panel shows the estimated tail probabilities for a combination of cost threshold and

estimation method. A dot in these graphs represents a sub-sample of the simulation

study. On the horizontal axes we show the absolute value of the difference between

the estimated tail probability on the training set using the GSM and the (empirical)

tail probability on the corresponding test set, while on the vertical axes we show the

same quantity obtained using one of the other methods (as indicated on top of each

panel). As an aid in visualization, in each panel the shading shows the density of the

points above and below the 45 degrees line separately. These graphs allow to conclude

that the GSM performs better than the other estimation methods from a predictive

point of view, since in every panel the majority of points are above the diagonal. The

labels above the 45 degrees line in each panel indicate the percentage of sub-samples

for which the GSM performs better than the compared method, while labels below the

45 degrees line indicate the percentage of sub-samples for which the GSM performs

worst. Note that the higher the threshold, the more pronounced the result. Moreover,

even if slightly biased, most of the times3 the GSM method works better than the

estimator based on the empirical distribution function.

3In Figure 4 only the graphs for some of the available thresholds are shown to avoid cluttering.
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3.3 Analysis of MCBS Medical Costs Data

In this section we illustrate a data analysis of the MCBS dataset. The aims of the

analysis are to provide estimates of the density function and of the risk of exceeding a

given medical cost threshold k in a single hospitalization, with associated probability

intervals. As in the simulation study, we restrict the analysis to hospitalizations in

which the first diagnosis has been for a smoking attributable disease, CHD or LC. The

size of the sample is n = 7, 615.

The parameters for the Gibbs sampler have been set to J = 200, α = 124, 960,

β = 34, 520 and we used 6, 000 sampling iterations (1, 000 of which as burn-in). The

data have been transformed using a cubic root transformation.

Figure 5 shows the fit of the GSM model to the MCBS data. Panel (a) presents

the fitted model density together with the data histogram, while Panel (b) reports

the QQ-plot of the model cumulative probabilities, evaluated at the posterior mean of

the mixture weights and scale parameter, versus the empirical cumulative probabilities

pi = i/(n + 1), i = 1, . . . , n. As it is clear from these graphs, the GSM provides a very

good representation of the data at hand.

Figure 6 contains additional results that provide insight on how the model works.

Even though J = 200 components were available, the estimation procedure selects at

every iteration just a small subset of them, sufficient to fit the data. In fact, panel (a)

shows that, a posteriori, the number of selected components is in between 9 and 20,

with the mode equal to 14, while panel (b) shows the posterior means of the mixture

weights. This conclusion is reinforced by the observation that only approximately

10 components have a posterior mean weight that is substantially greater than zero.

Panels (c) and (d) report the histograms of the model mean and variance evaluated

at each Gibbs sampler iteration. The vertical dashed lines indicate the overall sample

mean and variance. These plots are useful to qualitatively assess whether the choices for

the hyperparameters α, β and for the number of mixture components J are appropriate

for the sample at hand.

Figure 7 displays the estimates of the tail probability for different threshold values.

In other words, this graph presents the “risk” of exceeding a given medical costs thresh-

old in a single hospitalization for people affected by smoking attributable diseases. The

95% credible intervals for each threshold estimate are also shown.

We performed a set of sensitivity analyses to prior hyperparameters, not reported

here in detail, and found that the results are not significantly affected.
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4 Discussion

In this paper we introduced a Bayesian mixture model and computation for density es-

timation of very skewed distributions. Our approach is based on a mixture of gamma

distributions over the shape parameter. This family of distributions includes com-

ponents whose means and variances increase together, offering a parsimonious way

of representing populations in which a small fraction of individuals has an outlying

behaviour that is difficult to predict.

The development of our work is motivated, by the estimation of the proportion of

subjects affected by smoking attributable diseases, specifically CHD and LC, that, in

a single hospitalization, have a medical bill exceeding a given threshold. In particular,

we used data from MCBS, a multipurpose survey of a U.S. nationally representative

sample of Medicare beneficiaries.

Although the model works only for positive variables, we demonstrated that the

method we proposed represents an improvement on the standard modeling strategy

commonly adopted in the health economics and health services research literature for

the distribution of medical costs. Since this distribution is usually very skewed, the

typical assumption in that literature is to use a log-normal model. We show that for

highly skewed data this choice is not always appropriate and leads to highly biased and

inefficient estimates of tail probability, especially for high thresholds. The GSM model

presented here (i) does not exhibit any identifiability problem, (ii) represents a density

estimation method that works well for skewed distributions and (iii) allows to estimate

tail probabilities more efficiently than other common methods used in these kinds of

public health applications. Additionally, being a complete probabilistic specification

of the data generation process, it can be used for any other inferential purpose.

We also develop a computationally efficient algorithm which is a a modification of

the standard Gibbs sampler used in the Bayesian literature on mixture distributions

(Robert [37]). In our approach we integrate out the the scale parameter θ, thus making

computations more efficient (Liu [25]). The R software that implements the method is

available from the authors4.

In our model we fix a priori the number of mixture components J . A possible

generalization is to incorporate the model into a reversible jump approach, as proposed

by Richardson and Green [36], in which the number of component is random. Due to

the particular features of our model, one way to implement it could be to let the

algorithm add or delete not simply one component, but rather 5 to 10 components, at

every step. The obvious consequence of this modification is a substantial increase in

4
sergio.venturini@unibocconi.it.
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the computational time needed for estimation. However, because of the limited loss

in specifying a large J , the tool we described is likely to be very useful as currently

proposed.

As a future generalization of our basic framework, we suggest that it may be useful

to model the scale parameter as a function of covariates of interest. This extension

would allow to get a general and robust regression model.

Appendix

Gibbs sampler for mixture estimation with θ integrated out

The posterior distribution of (π1, . . . , πJ , θ), given the sample (y1, . . . , yn), can be writ-

ten as

p(π1, . . . , πJ , θ|y1, . . . , yn) ∝




J∏

j=1

π
1
J
−1

j


 θα−1e−βθ

n∏

i=1




J∑

j=1

πj

θj

Γ(j)
yj−1

i e−θyi


 .

The standard algorithm to implement the posterior simulation is reported in the next

subsection. However, to increase efficiency, in our estimation approach we integrate

out the scale parameter θ (Liu [25], MacEachern [26], MacEachern et al. [27]). Then

(3) becomes

p(y1, . . . , yn|x1, . . . , xn) =

∫
∞

0

θ
Pn

i=1 xi

∏n

i=1 Γ(xi)

(
n∏

i=1

yxi−1
i

)
e−θ

Pn
i=1 yi

βα

Γ(α)
θα−1e−βθ dθ

=
βα

Γ(α)

∏n

i=1 yxi−1
i∏n

i=1 Γ(xi)

∫
∞

0

θ α+(
P

n
i=1 xi)−1e−(β+

P
n
i=1 yi) θ dθ

=
βα

Γ(α)

∏n

i=1 yxi−1
i∏n

i=1 Γ(xi)

Γ (α +
∑n

i=1 xi)

(β +
∑n

i=1 yi)
α+(

P
n
i=1 xi)

. (10)

Note that the observed data, conditionally on the non-observed ones, are no longer

independent. The interpretation of this fact is that θ was a parameter shared by all

the (yi, xi) pairs, i = 1, . . . , n. Removing θ has introduced dependence among the data.

The full conditional of the mixture weights is hence given by

p(π1, . . . , πJ |y1, . . . , yn, x1, . . . , xn) ∝

J∏

j=1

π
1
J

+nj−1
j ,

while, to get the full conditional of the missing data, we decompose it into the individual

full conditionals

p(xi|y1, . . . , yn, x1, . . . , xi−1, xi+1, . . . , xn, π1, . . . , πJ) ,

13
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i ∈ {1, . . . , n}. Note that

p(xi|y, x(−i), π) =

J∑

j=1

p(xi, x(−i)|y, π)
∑J

k=1 p(k, x(−i)|y, π)
I(xi = j)

=

J∑

j=1

p(y|xi, x(−i)) · p(xi, x(−i)|π)
∑J

k=1 p(y|k, x(−i)) · p(k, x(−i)|π)
I(xi = j) ,

for i ∈ {1, . . . , n} and where x(−i) denotes the x = (x1, . . . , xn) vector with the i-th

element deleted. The second equality follows from p(x|y, π) · p(y|π) = p(y|x, π) ·

p(x|π) and from the conditional independence of y from π, given the missing data x.

Substituting (10) we obtain

p(xi|y, x(−i), π) =

J∑

j=1

πj
y

j−1
i

Γ(j)

Γ(α+
P

(−i) xr+j)
(β+

P
n
r=1 yr)

j

∑J

k=1 πk
y

k−1
i

Γ(k)

Γ(α+
P

(−i) xr+k)
(β+

P
n
r=1 yr)

k

I(xi = j) , (11)

where the
∑

(−i) xr denotes the sum of all the component labels apart from the i-th

one. If one further assumes that α ∈ N, then (11) can be further simplified5 to

p(xi|y, x(−i), π) =
J∑

j=1

πj
y

j−1
i

Γ(j)

(α+
P

(−i) xr)
j

(β+
P

n
r=1 yr)

j

∑J

k=1 πk
y

k−1
i

Γ(k)

(α+
P

(−i) xr)
k

(β+
P

n
r=1 yr)

k

I(xi = j) , (12)

where (n)k denotes the Pochhammer symbol. We refer to the whole fraction inside the

leftmost summation as κij . The steps to implement this simulation algorithm are then

summarized below:

• Simulate

π|y, x ∼ DJ

(
1

J
+ n1, . . . ,

1

J
+ nJ

)
,

where nj =
∑n

i=1 I(xi = j), j = 1, . . . , J .

• Simulate, for every i = 1, . . . , n,

p(xi|y1, . . . , yn, x1, . . . , xi−1, xi+1, . . . , xn, π1, . . . , πJ ) =

J∑

j=1

κijI(xi = j),

with κij as defined above, j = 1, . . . , J .

• Update nj , j = 1, . . . , J .

5This simplification helps to avoid overflow errors during the computation.
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Standard Gibbs sampler for mixture estimation

The implementation of the standard Gibbs sampling is straightforward and involves

the iterative simulation from (4), for the parameters of the model, and from

p(x1, . . . , xn|π1, . . . , πJ , θ, y1, . . . , yn) ,

for the missing data. The steps for the algorithm are (see for example Robert [37]):

• Simulate

θ|y, x, π ∼ Ga

(
α +

n∑

i=1

xi, β +

n∑

i=1

yi

)

π|y, x, θ ∼ DJ

(
1

J
+ n1, . . . ,

1

J
+ nJ

)
,

where nj =
∑n

i=1 I(xi = j), j = 1, . . . , J .

• Simulate, for every i = 1, . . . , n,

p(xi|yi, π1, . . . , πJ , θ) =
J∑

j=1

πijI(xi = j),

where

πij =
πjfj(yi|θ)∑J

k=1 πkfk(yi|θ)
, j = 1, . . . , J.

• Update nj , j = 1, . . . , J .
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Table 1: Summary of the MCBS dataset: high-order quantiles of medical expenditures of

first hospitalization for LC, CHD or both.

Quantile order 75 90 95 97.5 99 99.9

Quantile ($) 8,187.5 15,457.2 22,485.6 29,009.4 40,955.9 115,060.6

Table 2: Summary of the MCBS dataset: number of hospitalizations with a cost above a

specified threshold.

Threshold ($) 10, 000 15, 000 20, 000 30, 000 50, 000 80, 000 100, 000

Count 1,468 799 503 179 48 24 9

Proportion 0.1928 0.1049 0.0661 0.0235 0.0063 0.0032 0.0012
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π

θ

x

y

Figure 1: Directed acyclic graph (DAG) for the missing data representation of the

GSM (π, θ|J) model.
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Figure 2: Histograms and boxplots of positive Medicare expenditures for hospitalizations

regarding smoking attributable diseases (lung cancer and coronary heart disease) from the

1999-2002 Medicare Current Beneficiaries Survey (for clarity of exposition, the histogram

of the original expenditures has been truncated at the top.)

22

http://biostats.bepress.com/jhubiostat/paper124



−
30

0
−

25
0

−
20

0
−

15
0

−
10

0
−

50
0

50

10,000 15,000 20,000 30,000 50,000 80,000

R
el

a
ti
v
e

M
ea

n
S
q
u
a
re

d
E

rr
o
r

(%
)

Threshold

−
10

0
−

80
−

60
−

40
−

20
0

20

10,000 15,000 20,000 30,000 50,000 80,000

R
el

a
ti
v
e

B
ia

s
(%

)

Threshold

(a) (b)

Figure 3: Simulation study. (a) For different threshold values, the percentage mean squared

error relative to the EDF estimator defined by [(mseEDF − msep̂) /mseEDF]× 100 is shown.

Circles indicate the gamma shape mixture tail probability estimator, diamonds the mixture

of normals estimator and squares that based on the log-normal distribution. (b) For differ-

ent threshold values k, the percentage bias relative to the sample proportion for the entire

sample pTRUE = #{i : yi > k}/500 defined by [(E (p̂) − pTRUE) /pTRUE] × 100 is shown.

Circles indicate the gamma shape mixture tail probability estimator, diamonds the mixture

of normals estimator and squares that based on the log-normal distribution.
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Figure 4: Simulation study: pairwise comparison of predictive performances. Each point

represents a sub-sample of the simulation study. The coordinates of each point are given

by the absolute value of the difference between the estimated tail probability on the training

and test set for the GSM (π, θ|J) model (on the horizontal axes) and for an alternative

model (on the vertical axes), as indicated on top of each plot. Graphs on different rows

refer to different medical expenditure thresholds.
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Figure 5: MCBS data analysis. Fit of the GSM (π, θ|J) model to the MCBS medical costs

related to smoking attributable diseases (n = 7, 615 hospitalizations). (a) The solid line is

the posterior mean, while the shaded area is the correspondent 95% credible interval (on

the horizontal axis the cubic root transformed data are reported). (b) QQ-plot of the model

cumulative probabilities versus the empirical ones.
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Figure 6: MCBS data analysis. (a) Posterior mean of the mixture weights. (b) Number of

selected mixture components. (c) Posterior distribution of the model mean. The vertical

dashed line represents the data sample mean and the over-imposed solid line is the kernel

density estimator. (d) Posterior distribution of the model variance. The vertical dashed line

indicates the data sample variance, while the over-imposed solid line is the kernel density

estimator. 26
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Figure 7: MCBS data analysis. Risk to exceed a given medical costs threshold in a single

hospitalization. Each point corresponds to the estimate of the predictive posterior probability

P̂(y∗ > k|y) obtained with the GSM (π, θ|J) model on the MCBS data. Shading represents

the 95% credible intervals.
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