
Harvard University
Harvard University Biostatistics Working Paper Series

Year  Paper 

Generalized Quantile Treatment Effect

Sergio Venturini∗ Francesca Dominici†

Giovanni Parmigiani‡

∗Universita Bocconi, Milan Italy, sergio.venturini@unibocconi.it
†Harvard School of Public Health, fdominic@hsph.harvard.edu
‡Harvard School of Public Health and Dana-Farber Cancer Institute, gp@jimmy.harvard.edu

This working paper is hosted by The Berkeley Electronic Press (bepress) and may not be commer-
cially reproduced without the permission of the copyright holder.

http://biostats.bepress.com/harvardbiostat/paper181

Copyright c©2014 by the authors.



Generalized Quantile Treatment Effect

Sergio Venturini1∗, Francesca Dominici2, Giovanni Parmigiani3

October 7, 2014
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Abstract

We propose a new general approach for estimating the effect of a binary treat-

ment on a continuous and potentially highly skewed response variable, the generalized

quantile treatment effect (GQTE). The GQTE is defined as the difference between a

function of the quantiles under the two treatment conditions. As such, it represents a

generalization over the standard approaches typically used for estimating a treatment

effect (i.e., the average treatment effect and the quantile treatment effect) because

it allows the comparison of any arbitrary characteristic of the outcome’s distribution

under the two treatments. Following (Dominici et al., 2005), we assume that a pre-

specified transformation of the two quantiles is modeled as a smooth function of the

percentiles. This assumption allows us to link the two quantile functions and thus

to borrow information from one distribution to the other. The main theoretical con-

tribution we provide is the analytical derivation of a closed form expression for the

likelihood of the model. Exploiting this result we propose a novel Bayesian inferential

methodology for the GQTE. We show some finite sample properties of our approach

through a simulation study which confirms that in some cases it performs better than

other nonparametric methods. As an illustration we finally apply our methodology to

the 1987 National Medicare Expenditure Survey data to estimate the difference in the

single hospitalization medical cost distributions between cases (i.e., subjects affected

by smoking attributable diseases) and controls.

Keywords: average treatment effect (ATE), medical expenditures, NMES, Q-Q plot,

quantile function, quantile treatment effect (QTE), tailweight.
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1 Introduction

The effect of a treatment on an outcome is often the main parameter of interest in

many scientific fields. The standard approach used to estimate it is the so called

average treatment effect (ATE), the difference between the expected values of the

response’s distributions under the two treatment regimes. While intuitive and useful

in many situations, it suffers from some limitations; in particular it becomes highly

biased when the response is skewed.

A further drawback of the ATE is its coarseness as a summary of the distance

between the expected value of the response’s distributions under the two treatments.

It is a matter of fact indeed that the effect of the treatment on the outcome often

varies as we move from the lower to the upper tail of the outcome’s distribution. This

limitation of the ATE has been addressed in the literature by introducing the so called

quantile treatment effect (QTE), the difference between the response’s distribution

quantiles under the two treatments (Abadie et al., 2002; Chernozhukov and Hansen,

2005; Firpo, 2007; Frölich and Melly, 2008).

In this paper we propose a more general measure of the effect of a binary treatment

on a continuous outcome. We call it the generalized quantile treatment effect (GQTE),

defined as

∆g(p) = g(Q1(p))− g(Q2(p)), (1.1)

where Q1(p) and Q2(p) represent the quantile functions of the outcome under the two

treatment conditions and g(·) is an arbitrary but known function of the quantiles. For

example, if g(·) is chosen to be the identity function, then the GQTE simplifies to the

QTE, while if g(·) is the integral over the percentile p, the GQTE becomes equivalent

to the ATE. The GQTE is a new parameter which generalizes the existing approaches

for estimating a treatment effect.

To estimate and formulate inferences about the GQTE we propose a Bayesian

approach that can accommodate both symmetric and skewed outcomes, as well as

situations where the sample size under a treatment condition (cases) is much smaller

than the sample size under the other treatment condition (controls). In particular, we

assume

h

(
Q1(p)

Q2(p)

)
= s(p) , (1.2)

where h is a monotone function and s is assumed to be smooth. In other words, we

assume that the transformed quantile ratio is a smooth function of the percentile p.

The idea of smoothly modeling the ratio of the quantiles has been first introduced

by Dominici et al. (2005) who exploited it by proposing a nonparametric estimator of

the mean difference between two populations. Here we generalize their approach by

permitting the comparison of any characteristic of the outcome’s distributions under

the two treatments.

An important theoretical contribution of this paper is the derivation of a closed form
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expression for the model likelihood. We show that it is possible to obtain an analytically

tractable form for the Y2 density (the controls) without explicitly specifying a model

for it. Clearly the likelihood is needed to carry out the Bayesian estimation but in

principle it could be employed for classic likelihood procedures as well. Moreover,

our proposed approach allows to borrow strength from one sample to the other, thus

improving efficiency in the estimation of the quantiles (Dominici et al., 2005).

As an illustration we apply our method to the comparison of the single hospital-

ization medical costs distributions between subjects with and without smoking at-

tributable diseases. The data set we use is the National Medical Expenditures Survey

(NMES) supplemented by the Adult Self-Administered Questionnaire Household Sur-

vey.

The paper is organized as follows. In Section 2 we define the new parameter ∆g(p)

and illustrate some quantile-based measures that will be used in the paper. In Section

3 we provide details of the estimation approach together with some special cases. We

then present the results of a simulation study in Section 4 through which we conclude

that under a broad set of conditions our approach performs better than other flexible

methods for comparing two distributions. In Section 5 we illustrate the results of the

data analysis on the NMES data set. Section 6 concludes the paper with a discussion

and some final remarks.

2 The Generalized Quantile Treatment Effect (GQTE)

Consider two positive continuous random variables Y1 and Y2 with quantile functions

Q1 and Q2, where

Qℓ(p) ≡ F−1
ℓ (p) ≡ inf{y : Fℓ(y) ≥ p}

for 0 < p < 1 and ℓ = 1, 2. To compare F1 and F2 as flexibly as possible we introduce

the generalized quantile treatment effect, which is defined as

∆g(p) = g(Q1(p))− g(Q2(p)), (2.1)

where g(·) is a known function of the quantiles. Notice that no a priori assumptions

are made about the admissible functions g(·), thus potentially any function of the

quantiles can be used. Therefore, the GQTE provides a general approach to compare

the response’s distributions under the two treatments. More precisely, by properly

choosing the function g(·), we can recover any specific characteristic of the outcome’s

distributions F1 and F2 and, through (2.1), their difference.

The simplest case arises when g(x) = x. In this case the GQTE simplifies to

∆(p) = Q1(p)−Q2(p), (2.2)

the so called (unconditional) QTE (Frölich and Melly, 2008), sometimes also named

the percentile-specific effect between two populations (see for example Dominici et al.,

2006, 2007).
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A second example is obtained by choosing g(x) =
∫
x dp, which produces

∆ =

∫ 1

0

Q1(p) dp−
∫ 1

0

Q2(p) dp , (2.3)

the extensively used ATE (see for example Wooldridge, 2010, Chapter 21).

These examples illustrate how the GQTE reduces to the two most used parameters

of interest for estimating a treatment effect, the ATE and QTE. However, the GQTE

can provide a variety of other useful measures. In Appendix A we illustrate some other

interesting cases that usually are not taken into consideration in the literature.

3 Estimation Methodology

In this section we the procedure we illustrate the estimation procedure of GQTE we

developed for estimating the GQTE. Our proposed approach is sufficiently general that

can be used for any choice of g(·).

3.1 Definitions and Model Assumptions

We assume that Y1|η ∼ F1(· ;η), where F1 is a given probability distribution depending

upon a vector of unknown parameters η. For example, in the application presented

in Section 5 we choose F1 as a mixture distribution. To borrow information from one

distribution to the other, we assume that the transformed quantile ratio is a smooth

function of the percentiles with λ degrees of freedom, that is

h

(
Q1(p)

Q2(p)

)
= s(p, λ) , 0 < p < 1 . (3.1)

The function h(·) is assumed to be monotone differentiable. It represents a kind of

link function and it is used to transform the quantile ratio to account for the potential

skewness of the F1 and F2. The typical choice for skewed data is h(x) = log x, while

for symmetric data distributions the identity function is the most reasonable option.

For the sake of simplicity, we henceforth indicate the smooth function s(p, λ) with

reference to the corresponding design matrix X(p, λ), so that it can be written as

X(p, λ)β, where β is a vector of unknown parameters. More explicitly, we assume that

s(p, λ) ≡ X(p, λ)β =
∑λ

k=0 Xk(p)βk, where Xk(p) are orthonormal basis functions

with X0(p) = 1. The number of degrees of freedom λ is a further parameter that has

either to be chosen or estimated from the data. In Subsection 3.7 we propose a simple

approach for eliciting it. The basis functions are usually either splines or polynomials.

The main justification for assuming (3.1) is that it allows to borrow information

from both the response’s distributions under the two treatment conditions when we

estimate the GQTE ∆g(p). Assumption (3.1), in fact, implies

Q1(p) = Q2(p)h
−1 [X(p, λ)β] , (3.2)
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and also

Q2(p) = Q1(p)
{
h−1 [X(p, λ)β]

}−1
, (3.3)

which, once substituted in (2.1), return

∆g(p) = g
(
Q2(p)h

−1 [X(p, λ)β]
)
− g
(
Q1(p)

{
h−1 [X(p, λ)β]

}−1
)
.

For the special case where g(x) = x and h(x) = log(x), Dominici et al. (2005) have

shown that under assumption (3.1) it is possible to obtain a more efficient estimator of

∆ than the sample mean difference and the maximum likelihood estimator assuming

that Y1 and Y2 are both log-normal.

Notice that, since the main interest in the paper resides in the estimation of ∆g(p),

for which only β is required, η is treated as nuisance (see Subsection 3.6 for further

details).

In this paper we propose a Bayesian approach for estimating ∆g(p) for any choice of

g(·) and h(·). An interesting feature of our estimation procedure for ∆g(p), is that we

only need to specify the distribution function for Y1. The specification of F1 together

with the relationship (3.1) automatically determines a distributional assumption for Y2.

We refer to the distribution of Y2 induced by F1 and assumption (3.1) as F2(· ;β,η).
As a last remark for this section, we want to highlight the difference between the

function g(·), introduced in the previous section, and h(·), defined above in (3.1).

They should not be confused because they have distinct roles: the former identifies the

response’s characteristic we want to estimate for assessing the treatment effect, while

the latter has been introduced as a mechanism to attenuate the possible skewness

present in the data.

3.2 Estimation Approach and Likelihood

The steps involved in our estimation approach are summarized as follows:

1. Choose a (possibly flexible) density f1(y1|η) for Y1, a smoothing function s(p, λ)

(usually a spline or a polynomial) and a value for λ;

2. From (3.3) derive the density function of Y2, that we denote as f2(y2|β,η). Note
that, as proved by Theorem 1 below, this density will depend on the model

parameter β as well as on the parameter η through the Y1 density.

3. Calculate the joint likelihood L (β,η|y1,y2) to use for finding the posterior dis-

tribution of (β,η) in a Markov Chain Monte Carlo (MCMC) algorithm.

4. Obtain the posterior distribution of any special case of the GQTE.

The critical step in this sequence is represented by the calculation of the likelihood,

which we now describe.

Consider two i.i.d. samples (y11, . . . , y1n1) and (y21, . . . , y2n2) drawn independently

from the two populations F1(· ;η) and F2(· ;β,η). We refer to the former as the cases
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(or the treated) and to the latter as the controls (or the untreated). We assume that

these distribution functions have densities f1(· ;η) and f2(· ;β,η) respectively. The

likelihood function for our model is then given by

L (β,η|y11, . . . , y1n1 , y21, . . . , y2n2) =

n1∏

i=1

f1(y1i|η)×
n2∏

j=1

f2(y2j |β,η). (3.4)

Since we didn’t state any specific distributional assumption for Y2, in principle we

could not calculate the likelihood because we don’t have any expression for f2. Two

strategies are possible here. Given the f1 specification, one possibility is to find an ex-

pression for Q1, then map it through equation (3.1) to find a corresponding expression

for Q2, invert it to determine F2, and finally differentiate the result to get f2. Apart

from simple situations, usually these steps (i.e. integration, inversion and differentia-

tion) need to be performed numerically. A second possibility is to replace the Y2 density

in the likelihood with its correspondent density quantile function, f2(Q2(pj)|β,η) (see
Parzen, 1979), for which the next theorem provides a closed form expression. The

proof of the theorem and two additional corollaries are available in the Appendix B,

while in the next subsection we provide some further explanation on how to compute

f2.

Theorem 1. Let Y1|η ∼ F1(· ;η), with F1 having density function f1(· ;η), and assume

that (3.1) holds. If, for every 0 < p < 1, the vector β satisfies the constraint

X ′(p, λ)β

{
d

d (X(p, λ)β)
h−1 [X(p, λ)β]

}
≤ 1

f1 (Q1(p)|η)Q1(p)
, (3.5)

the density quantile function f2(Q2(p)|β,η) for Y2 is

f2(Q2(p)|β,η) = f1(Q2(p)h
−1[X(p,λ)β]|η)h−1[X(p,λ)β]

1−f1(Q2(p) h−1[X(p,λ)β]|η)X′(p,λ)βQ2(p){ d
d(X(p,λ) β)h

−1[X(p,λ)β]} . (3.6)

The function f2(Q2(p)|β,η) is a properly defined density.

Note that f2 correctly depends upon both the model parameter β and the Y1

parameter η through the f1 density. The motivation for the constraint (3.5) comes

from the need to guarantee that f2 is a non-negative function. As a further remark,

we observe that the term in the likelihood involving f2(Q2(pj)|β,η) depends upon the

observations y2j through the unknown quantile function values Q2(pj).

3.3 Details for the Computation of f2

A computational drawback of our proposal is that the “true” values of the percentiles

pj , i.e. those generated under the assumed model for Y2, should be used in the calcu-

lation of the likelihood. Unfortunately, these are not available, because the cumulative

distribution function F2 is not given explicitly and we cannot find the pj corresponding

to the observed data y2j as F2(y2j) = pj .

The approach we recommend to bypass this issue is to approximate the pj using

the procedure described in Gilchrist (2000), which we summarize as follows:
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1. Denoting with y2(j) the ordered observed values for Y2, we look for the correspond-

ing set of ordered p(j) such that y2(j) = Q̂2(p(j)), where Q̂2(p) is an estimate of

Q2(p) based on the current values of the parameters β and η (i.e. the values from

the current MCMC draw). More specifically, we find the p(j) using the following

procedure: suppose p0 is the current estimate of p for a given y value. Then, for

a value of p close to p0, Q̂2(p) can be approximated using the following Taylor

series expansion

Q̂2(p) = Q̂2(p0) + Q̂′
2(p0)(p− p0)

= Q̂2(p0) + q̂2(p0)(p− p0),

which, solving for p, gives

p = p0 +
y − Q̂2(p0)

q̂2(p0)
, (3.7)

where q̂2(p0) is the quantile density function corresponding to Q̂2(p0) and where

we used the fact that y = Q̂2(p). As a starting point for p(j) we use j/(n2 + 1),

j = 1, . . . , n2. Equation (3.7) is used in an iterative fashion till the given value of

Q̂2(p) differs from y by less than some chosen small amount (we use 1E–8).

2. Once the values of pj are available, we compute the quantities f2(Q2(pj)|β,η)
using equation (3.6). The critical issue in this step is the calculation of the

derivative X ′(p, λ). In the cases we consider here (i.e. either a polynomial or a

spline basis), the derivative is available in closed form and so no further numerical

approximation is needed.

Strictly speaking, the calculation of f2 provided by the procedure we just described

is not exact but involves a numerical approximation. We performed a detailed analysis

on the goodness of this approximation and we found that the actual and approximated

f2 values (and hence the overall likelihood) were indistinguishable.

3.4 Special Cases

We present now some special cases where an appropriate choice of the design matrix

X(p, λ) allows to recover an exact expression for f2(Q2(p)|β,η) belonging to a known

distribution family. The proofs of these special cases are provided in Appendix C.

Case 1: Y1 is Uniform and X(p, λ = 0) = 1. In this case we assume that Y1|θ1 ∼
U [ 0, θ1] and choose h(x) = x. Then Q1(p)/Q2(p) = β0 and from (B.6) it follows that

f2(Q2(p)|θ1, β0) =
β0

θ1
I[0, θ1/β0]{Q2(p)} ,

which corresponds to the density quantile function of a uniform random variable with

parameter θ2 = θ1/β0. Note that it correctly depends both upon the parameter β0 and

the Y1 parameter η = θ1.

7

Hosted by The Berkeley Electronic Press



Case 2: Y1 is Log-normal and X(p, λ = 1) = [1,Φ−1(p)]. We now assume Y1|µ1, σ
2
1 ∼

Ln(µ1, σ
2
1) and fix h(x) = log(x). It follows that log{Q1(p)/Q2(p)} = β0 + β1 Φ

−1(p),

where Φ−1(p) is the quantile function of a standard normal random variable. Then by

(B.8) we get

f2(Q2(p)|µ1, σ
2
1 , β0, β1) =

1

Q2(p)
√
2π(σ1 − β1)

exp

{
− [logQ2(p)− (µ1 − β0)]

2

2(σ1 − β1)2

}
,

which is the density quantile function of a Ln(µ2, σ
2
2) random variable with µ2 =

(µ1 − β0) and σ2 = (σ1 − β1). Note that the density quantile function of Y2 correctly

depends both upon the parameters β = (β0, β1) and the Y1 parameters η = (µ1, σ
2
1).

In this case the constraint (B.7) simply requires that β1 ≤ σ1, for every 0 < p < 1.

Case 3: Y1 is Pareto and X(p, λ = 1) = [1, log(1 − p)]. Suppose Y1|a1, b1 ∼ Pa(a1, b1)

and choose h(x) = log(x). In this case log{Q1(p)/Q2(p)} = β0 + β1 log(1 − p) and by

(B.8) we get

f2(Q2(p)|a1, b1, β0, β1) =
a1

a1β1 + 1

(
b1e

−β0
) a1

a1β1+1 Q2(p)
−
(

a1
a1β1+1+1

)

,

which represents the density quantile function of a Pa(a2, b2) random variable with

a2 = a1

a1β1+1 and b2 = b1e
−β0 . The density quantile function of Y2 correctly depends

both upon the parameters β = (β0, β1) and the Y1 parameters η = (a1, b1). In this

case the constraint (B.7) requires that β1 ≥ − 1
a1
, for every 0 < p < 1.

3.5 Prior Structure and Posterior Calculation

The parameters β and η are assumed to be a priori independent, that is

p(β,η|ζβ, ζη) = p(β|ζβ)× p(η|ζη) ,

where ζβ and ζη are the prior hyperparameters for β and η respectively. For p(β|ζβ)
we use a a multivariate normal distribution with mean equal to the OLS estimate of

β based on the model

h

(
y1(i)

y2(i)

)
= X(pi, λ)β + εi , i = 1, . . . , n, (3.8)

where n = min(n1, n2) and pi = i/(n + 1), and variance-covariance matrix equal to

σ2
βI(λ+1), where σ2

β is normally fixed at a high value to induce a weakly informative

prior distribution for each βj . For what regards the prior distribution for η, the choice

clearly depends upon the assumption made about F1, but we suggest to use conjugate

priors. For an example see the application in Section 5.

The posterior distributions of β and η are obtained by an MCMC simulation. In

particular, we use an independent Metropolis-Hastings algorithm with blocking over β

and η separately (see Gilks et al., 1996; Robert and Casella, 2004; O’Hagan and Forster,
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2004; Carlin and Louis, 2009). As proposal distribution for β we use a (λ + 1)-

dimensional t distribution with mean and scale matrix chosen to match the β OLS

estimate and variance from (3.8), and a small number of degrees of freedom, usually

set to 3. As with the prior, the proposal distribution for η depends upon the particular

application under investigation (see Section 5 for an example).

3.6 GQTE Estimation and Inference

Once the β parameters have been estimated and the convergence of the simulated

chains has been assessed by conventional methods (see Carlin and Louis, 2009, or

Gelman et al., 2013), we can obtain the posterior distribution of the GQTE for any

choice of g(·) as we now describe.

For each iteration m of the MCMC simulation a value β̂(m) for β is available.

Through the expressions (3.2) and (3.3) we can obtain Q̂
(m)
1 (p) and Q̂

(m)
2 (p) as

Q̂
(m)
1 (p2i) = y2(i)h

−1
[
X (p2i, λ) β̂

(m)
]
, i = 1, . . . , n2,

and

Q̂
(m)
2 (p1i) = y1(i)

{
h−1

[
X (p1i, λ) β̂

(m)
]}−1

, i = 1, . . . , n1,

where the yℓ(i) are the order statistics for sample ℓ, while pℓi = i/(nℓ+1), i = 1, . . . , nℓ,

for ℓ ∈ {1, 2}. It then follows that the m-th iteration value for ∆g(p) is given by

∆̂(m)
g (p) = g

(
Q̂

(m)
1 (p)

)
− g

(
Q̂

(m)
2 (p)

)
, 0 < p < 1, (3.9)

where Q̂
(m)
1 (p) and Q̂

(m)
2 (p) are found by interpolating the estimated quantile func-

tions
(
p2i, Q̂

(m)
1 (p2i)

)
and

(
p1i, Q̂

(m)
2 (p1i)

)
. The estimate of ∆g(p) is finally obtained

through the Rao-Blackwellized estimator

∆̂g(p) =
1

M

M∑

m=1

∆̂(m)
g (p) , 0 < p < 1, (3.10)

where M is the total number of iterations. Since the whole posterior distribution of

∆g(p) is available, standard inferential questions can be easily addressed in the usual

ways.

As detailed in Section 2, many interesting special cases arise from the general

definition of the GQTE. For example, if interest lies in estimating the QTE defined in

(2.2), g(·) corresponds to the identity function and expression (3.9) becomes

∆̂(m)(p) = Q̂
(m)
1 (p)− Q̂

(m)
2 (p) , (3.11)

which can be evaluated for any value of p ∈ (0, 1).

9
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If the focus is on the ATE, defined in (2.3), then (3.9) returns the estimator

∆̂(m) =
1

n2

n2∑

i=1

y2(i)h
−1
[
X (p2i, λ) β̂

(m)
]

− 1

n1

n1∑

i=1

y1(i)

{
h−1

[
X (p1i, λ) β̂

(m)
]}−1

. (3.12)

Appendix D contains the details for some other cases. As a final remark, note that

an appealing feature of this approach is that the MCMC procedure needs to be run

only once to compute the difference between any measure of the treatment effect of

interest in the two groups.

3.7 Selecting the Number of Degrees of Freedom λ

Choosing the number of degrees of freedom λ to use in the procedure above is not

trivial. Many approaches can be proposed, but to keep the computational burden of

our approach manageable, we propose to elicit it by minimizing an empirical version

of the L1 discrepancy measure (Devroye and Lugosi, 2001)

D0(λ) =

n∑

i=1

∣∣f2(Q2(pi)|β,η)− f0
2 (Q2(pi))

∣∣ , (3.13)

where f0
2 denotes the unknown true Y2 density. More precisely, we select λ using

the following procedure: for each λ ∈ {1, . . . , λmax}, where λmax is the maximum

admissible value for λ, we estimate f2(Q2(pi)|β̂, η̂), where β̂ is equal to the OLS

estimate given in (3.8) and η̂ is estimated by using only the data (y11, . . . , y1n1). After

replacing the true unknown density f0
2 with a kernel density estimate of the data

(y21, . . . , y2n2), the value of λ is chosen as that minimizing the value of (3.13) over the

set {1, . . . , λmax}. One drawback of this approach is that it tends to select high values

of λ. We provide further discussion about this issue in Section 6.

4 Simulation Study

In this section we report the results of a simulation study we performed to compare

the finite sample properties of our method with those of other flexible approaches.The

simulation indicates that often the GQTE procedure has lower mean squared error and

a similar bias as other flexible methods for comparing two distributions. In particu-

lar, we contrast our proposal with the smooth quantile ratio estimation (SQUARE)

approach presented in Dominici et al. (2005), and the Probit stick-breaking process

(PSBP) proposed in Chen and Dunson (2009). The former is a frequentist semipara-

metric method while the latter is a Bayesian nonparametric model. We now provide

some details about these two methodologies and a justification for using them.
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In SQUARE it is assumed that the log quantile ratio is a smooth function of the

percentile p with λ degrees of freedom, that is

log

{
Q1(p)

Q2(p)

}
= s(p, γ), 0 < p < 1.

The basic idea of smooth quantile ratio estimation is to replace the empirical quantiles

with smoother versions obtained by smoothing the log-transformed ratio of the two

quantile functions across percentiles. SQUARE has been proposed by Dominici et al.

(2005) as an estimator of the mean difference between two populations with the ad-

vantage of providing substantially lower mean squared error and bias than the sample

mean difference or the maximum likelihood estimator for log-normal populations. To

estimate γ a B-fold cross-validation approach is suggested. Finite sample inference is

performed by bootstrap but they also provide large sample results.

The PSBP is a general nonparametric Bayesian model which has been proposed

by Chen and Dunson (2009) for estimating the conditional distribution of a response

variable given multiple predictors. More specifically, the PSBP is a prior for an un-

countable collection of random distributions. Like for the models belonging to the class

of dependent Dirichlet processes (MacEachern, 1999), the PSBP main idea is to allow

for dependence across a family of related distributions as a function of some covari-

ates. More explicitly, the PSBP induce dependence in the weights of the stick-breaking

representation (Sethuraman, 1994) by replacing the beta-distributed random variables

with a probit model. This simple change greatly enhances the flexibility of the model,

thus providing an extremely interesting extension within the framework of dependent

priors across families of probabilities measures.

We decided to compare the GQTE with these two methods because they are both

highly flexible and have been proved to perform well under a broad set of situations.

Originally the simulation also included the ANOVA dependent Dirichlet process mix-

tures proposed by De Iorio et al. (2004), but we decided not to report it here because

it performed poorly as compared to the PSBP model. The reason for such inferior

results resides in the definition of the model itself, which assumes the weights in the

stick-breaking representation of the process to be fixed, i.e. the same for the response

distributions under the two treatment conditions.

Since SQUARE produces an estimate only for the mean difference between two

populations, our simulation is restricted to this specific case. We are aware that the

results only provide a partial demonstration of the GQTE advantages over the other

methods, but we also need to stress that the ATE is the most common measure used

in practice for estimating the extent of a treatment effect.

Our simulation framework is similar to that used in Dominici et al. (2005) and

includes five scenarios, which are described in Table 1 under the labels A to E. In

scenarios A, B and C the Y2 distribution is assumed to be log-normal with parameters

µ2 = 7 and σ2 = 1.5 which approximately correspond to the sample statistics for the

11
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medical expenditures of non-diseased subjects from the NMES data set. In scenario A,

the Y1 distribution is also log-normal but with larger values of the parameters, namely

µ1 = 7.5 and σ1 = 1.75. Scenarios B and C use a different assumption for the Y1

distribution chosen to represent some reasonable shapes. The next two scenarios, D and

E, compare the performances of the different methods using real data. In particular,

in scenario D the data are randomly drawn from the distributions of nonzero medicare

expenditures for cases and controls from the NMES data set. Finally, scenario E

assumes that both populations follow a gamma distribution with finite second moment.

Table 1: Simulation Study - Sampling mechanisms under each simulation

scenario. In scenario D, F̂g (g = 1, 2) are the empirical cumulative distribution functions

of the nonzero medical expenditures for patients in the case and control groups from the

NMES data set, and, in scenarios B and C, g(u) = exp{7 + 1.5 · Φ−1(u)}. Moreover,

in scenario B, sB(u) = I(0,1)(u)+I(0.9,1)(u), while in scenario C, sC(u) = 8u(1−u)I(0,1)(u).

Scenario Population 1 Population 2 n1 n2

A LogN (7.5, 1.75) LogN (7, 1.5) 100 1000

B u ∼ Unif(0, 1), y1 = g(u)esB(u) LogN (7, 1.5) 100 1000

C u ∼ Unif(0, 1), y1 = g(u)esC (u) LogN (7, 1.5) 100 1000

D F̂1 F̂2 100 1000

E Ga(2.5, 2.5/ȳ1) Ga(2.5, 2.5/ȳ2) 100 1000

Under each scenario we compare the mean squared error (RMSE) and bias (RB) in

percentage relative to the sample mean difference (ȳ1 − ȳ2) for the following methods:

(1) the GQTE approach that assumes Y1 to be log-normally distributed, (2) the GQTE

assuming Y1 follows a gamma distribution, (3) the SQUARE method using natural cu-

bic splines with the number of degrees of freedom chosen by 10−fold cross-validation,

(4) the PSBP model using the treatment indicator as the only predictor. The GQTE

estimators use a natural cubic spline basis for the cubic-root transformed quantile-ratio

smoother with the number of degrees of freedom λ chosen following the procedure de-

tailed in section 3.7. The RMSE is computed by [{MSE(ȳ1− ȳ2)−MSE(∆̂)}/MSE(ȳ1−
ȳ2)]× 100, while the RB is defined as [{E(∆̂)−∆}/∆]× 100. Note that positive values

for the RMSE imply a better performance for the estimator as compared to the sample

mean difference.

The results for 100 generated data sets for each scenario are reported in Table 2.

We considered only the case of unbalanced samples with n1 = 100 and n2 = 1000

because typically it represents a more critical situation to deal with in practice. These

results show that GQTE has a smaller mean squared error in most of the scenarios

considered.

12
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Table 2: Simulation Study - Results from 100 replicate datasets.

RMSE is the mean squared error relative to (ȳ1 − ȳ2) in percentage defined by

[{MSE(ȳ1 − ȳ2) − MSE(∆̂)}/MSE(ȳ1 − ȳ2)] × 100, and RB is the bias relative to

(ȳ1 − ȳ2) in percentage defined by [{E(∆̂) − ∆}/∆] × 100, under the data generation

mechanisms described in Table 1. The splines degrees of freedom λ for the GQTE approach

are chosen using the heuristic algorithm described in the section 3.7 while for SQUARE

we use 10-fold cross-validation.

Scenario A Scenario B Scenario C Scenario D Scenario E

RMSE RB RMSE RB RMSE RB RMSE RB RMSE RB

GQTE (LogN ) 39 -29 -26 -23 3 13 -26 18 -1 -2

GQTE (Gamma) 33 -16 1 -9 48 7 25 0 0 -2

SQUARE 35 -6 -7 -5 1 13 25 3 0 -1

PSBP 1 -6 6 -10 -8 9 -13 6 -3 -3

MSE(ȳ1 − ȳ2) 2952 5992 1051 2100 753

∆ 4982 15225 5244 7144 7144

In scenario A, where both the populations are log-normal, the GQTE assuming Y1

is log-normally distributed performs around 40% better than (ȳ1 − ȳ2), slightly better

than SQUARE, even if somewhat biased. This result is superior to that of PSBP,

which performs approximately as good as the sample mean difference. In scenario

B, the PSBP provides the best result with a mean square error which is 6% smaller

than (ȳ1 − ȳ2), followed by the GQTE with gamma distributed Y1. In scenarios C,

D and E the GQTE with gamma distributed Y1 outperforms both the PSBP and

SQUARE. More specifically, in scenario C the GQTE provides a mean square error

that is approximately 50% smaller than (ȳ1− ȳ2). This is also the least biased result. In

scenarios D and E, the GQTE approach provides comparable results as those provided

by SQUARE.

5 Application: Medical Costs for Smoking Attributable

Diseases

As an illustration, we apply the GQTE approach to the NMES data, where the distri-

butions of Y1 (the cases) and Y2 (the controls) are highly right-skewed. For this reason,

as we have illustrated in Subsection 3.1, we decide to use h(x) = log(x). We show that

having a smoking attributable disease induces both a location and scale shift in the

medical expenditure distribution as compared to that for non-affected subjects, but

with a thinning of the corresponding distributions tails.
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5.1 Data Description

The data used in the following analysis is taken from the National Medical Expendi-

ture Survey (NMES) and have been previously studied by other authors (for example

Dominici et al., 2005). It provides data on annual medical expenditures, disease sta-

tus, age, race, socio-economic factors, and critical information on health risk behav-

iors such as smoking, for a representative sample of U.S. non-institutionalized adults

(National Center For Health Services Research, 1987). NMES data derive from the

1987 wave. In the data set used here a total of 9,416 individuals are available. Table

3 briefly summarizes the data set (numbers in parentheses represent the percentage of

subjects with non-zero expenditures).

Table 3: Disease cases and controls for smokers (current or former) and for non-smokers.

Numbers within parentheses represent the percentage of people in that cell with non-zero

expenditures.

smokers non smokers Total

cases 165 (62%) 23 (70%) 188 (63%)

controls 4,682 (21%) 4,546 (28%) 9,228 (25%)

Total 4,847 (22%) 4,569 (28%) 9,416 (25%)

We consider as cases (Y1) those individuals who are affected by smoking diseases,

namely lung cancer and chronic obstructive pulmonary disease, while the controls (Y2)

are persons without a major smoking attributable disease.

In the following analyses we consider only the non-zero costs paid for each hospi-

talization by diseased and non-diseased subjects.

Figure 1(a) and (c) show the histograms and boxplots for the medical costs of

the cases and controls. Both the distributions are highly right-skewed, with the cases

sample which is much smaller than the controls one (118 vs. 2, 262). Table 4 contains

some high-order sample quantiles for the two groups which confirm the heavier tails of

the cases costs distribution. However, note also that the controls sample has a higher

maximum cost.

Table 4: Summary of the NMES data set: high-order quantiles of non-zero medical expen-

ditures for cases and controls.

Quantile order 75 90 95 99 99.9 100

Quantile for cases ($) 11,525.17 29,439.96 49,595.77 63,886.05 213,567.69 233,047.63

Quantile for controls ($) 2,600.00 9,799.664 30,625.206 49,771.60 135,896.07 238,185.94
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Figure 1: Histograms and boxplots of positive medical expenditures for hospitalizations

regarding smoking attributable diseases (lung cancer and coronary obstructive pulmonary

disease) from the 1987 National Medicare Expenditure Survey (for clarity of exposition, the

histogram of the original expenditures has been truncated at the top).
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Figure 2: (a) Q-Q plot of cubic root transformed non-zero medical expenditures. (b) Quan-

tile ratio across percentiles with a fitted natural cubic spline.

Figure 1(b) and (d) show the histograms and boxplots for the cubic root transformed

data. The need for such a transformation derives from the particular choice we make

regarding the cases distribution (see next subsection) and is not a general requirement

of our approach. Moreover, the use of this transformation does not alter in any way

the results and the conclusions we draw, hence in the following we systematically refer

to the transformed data. At any rate, note also that, even after the transformation,

the outcome distributions still present heavy right tails. This conclusion motivates the

use of h(x) = log(x).

In Figure 2(a) we report the Q-Q plot for the (cubic root transformed) NMES

data. We can identify a non-linear smooth relationship between the cases and controls

medical expenditures. Panel (b) of the same picture, which shows the quantile ratio

as a function of the percentile p, confirms these findings.

5.2 Model Assumptions and Tuning Parameters

In this application we assume that Y1|π, θ ∼ GSM (π, θ|J), a particular mixture of

gamma distributions with density

f(y|π1, . . . , πJ , θ) =

J∑

j=1

πj
θj

Γ(j)
yj−1e−θy ,

where the mixing occurs over the shape parameters and where J , the number of compo-

nents, is fixed a priori. First introduced in Venturini et al. (2008), it has been explicitly
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developed as a model for right-skewed distributions and its parameterization allows to

create a convenient and flexible method characterized by a single scale parameter for

all the gamma components, plus the ordinary set of mixture weights. We use conju-

gate priors θ ∼ Ga(α, δ) and π ∼ DJ

(
1
J , . . . ,

1
J

)
for the shared scale parameter and the

mixture weights respectively. The number of mixture components is fixed at J = 40,

while the θ hyperparameters are set to α = 845 and δ = 1, 300 (for more information

on the elicitation of these priors see Venturini et al., 2008, Section 2.3).

The initial values of the Metropolis-Hastings algorithm are chosen as follows: the

β chain is started from its OLS estimate, as discussed in (3.8), while for η = (θ,π) we

first get a preliminary estimate (with 5, 000 iterations) using the approach described

in Venturini et al. (2008), and then we fix their starting values to the corresponding

estimated posterior averages.

We run the MCMC algorithm for 1, 000, 000 iterations plus 200, 000 iterations as

burn-in. Such a large number of iterations is necessary because the model, being quite

complicated, has shown a slow convergence behavior of the chains.

5.3 Results

The selection procedure described in Subsection 3.7 for the number of degrees of free-

dom suggested a value of λ equal to 6, which can be considered fairly satisfactory from

a visual inspection of the scatterplot (see Figure 2(b)).

The acceptance rates for the MCMC posterior simulations are relatively small,

being around 0.5% for β, 25% for θ and 1.6% for π. Despite that, we do not consider

these results as problematic since the chain is moving in a high-dimensional space

((λ + 1) + (J + 1) = 48 dimensions), which necessarily slows down the convergence

process. This is the main reason why we decide to run the simulation for a longer

time. However, the results of the analysis presented below indicate that convergence

was attained. We made other attempts with simpler (but less flexible) specifications

of the Y1 distribution, which showed a more conventional behavior of the acceptance

rates.

Figure 3 shows the fitted values for the estimated model (3.1). The gray dots

represent the quantile ratio for the transformed data as a function of the percentile p.

The solid line illustrates the estimated posterior mean of the quantile ratio, while the

dashed one represents its OLS estimate (the same line as in Figure 2(b)). The shaded

area gives the credible bands for the estimated posterior means, showing a fairly low

amount of uncertainty around the estimates. Moreover, from the picture we can see

that our model is less sensitive to extreme observations, especially in the right tails of

the distributions.

In Figure 4 we report the estimated Y2 density. It is possible to ascertain a quite

good fit. In the display, together with the f2(Q2(p2i)|θ,π,β) posterior mean, we put

the corresponding 95% credible bands and the histogram of the data.
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Figure 3: Fitted values of the estimated model (3.1). The solid line represents the estimated

pointwise posterior means, while the shaded area correspond to their pointwise 95% credible

intervals. The dashed line corresponds to the OLS fit for the same data, as described in

(3.8).
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Figure 4: Estimated Y2 density. The solid line represents the estimated pointwise posterior

means, while the shaded area shows the corresponding 95% credible intervals. The thinner

dark gray line depicts the data histogram.
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Figure 5: Estimated Quantile Treatment Effect (QTE), defined as ∆(p) = Q1(p) −Q2(p).

The solid line reports the estimated pointwise posterior means, the shaded area gives the

corresponding 95% credible intervals, while the dashed line shows the sample quantile dif-

ferences. Data are cubic-root transformed.

We now describe the results for the GQTE ∆g(p) introduced in Section 3 for some

choices of the functional g(·). We start from the QTE, denoted as ∆̂(p) in (3.11), whose

estimate is shown in Figure 5. The solid line represents the posterior mean of the

medical costs QTE between cases and controls and the gray area is the corresponding

95% credible interval, while the dashed line portrays the sample quantile differences.

We can see that the distribution of the medical expenditures for subjects with smoking

attributable diseases is always above that of those without smoking-related diseases.

However, a much larger variability results in estimating the difference for the very

extreme quantiles. This behavior is not too surprising since the two samples become

very sparse as the medical expenditures become bigger (see the boxplots in Figure 1).

Figures 6(a) and (b) contain the posterior distributions of the ATE and the standard

deviation difference, as defined in Section 2. The sample mean and standard deviation

differences are depicted in the two plots with a vertical dotted line, while the 95%

credible intervals are indicated using dashed lines. The ATE estimated posterior mean

(on the log scale) is equal to 6.1127, while the estimated posterior mean of the standard

deviation difference is 2.6275. These results prove that having a smoking attributable

disease has a significant negative impact on both the location and scale of the single
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Figure 6: (a) Estimated posterior distribution of the Average Treatment Effect (ATE)

between cases and controls medical expenditures (cubic root transformed), as defined in

(2.3). The vertical dashed lines represent the 95% credible interval, while the dotted line is

the sample mean difference. (b) Estimated posterior distribution of the standard deviation

difference between cases and controls medical expenditures (cubic root transformed), as

defined in Section 2. The vertical dashed lines represent the 95% credible interval, while

the dotted line depicts the sample standard deviation difference.

hospitalization medical cost distribution. After re-transforming the estimated quantiles

on the original scale, we get an estimated posterior mean for the ATE between diseased

and non-diseased subjects equal to $6, 244.10.

Finally, Figures 7 shows the impact of the treatment variable (i.e., having or not

a smoking attributable disease) on the tailweight functions TW (p), defined in (A.4),

of the two populations. The tails of the medical costs distribution for the diseased

subjects tend to be heavier than those of the non-diseased ones for values of p up to

approximately 0.6, but the situation is inverted as we move to consider higher per-

centiles. Hence, while the fact of being affected by smoking attributable diseases tends

to increase both the average and the variance of the medical expenditures distribution,

we have found that the opposite occurs to the tail probabilities, that is, to the chances

of incurring in very high medical costs in a single hospitalization.

As a last comment, we would like to remark the explicit choice we made to exclude

the observations with null medical costs. We took this decision because the inclusion

of this further feature of the data requires the extension of our approach to a two-
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Figure 7: Estimated tailweight difference ∆TW (p) = TW1(p)− TW2(p) between cases and

controls, as defined in (A.4). The solid line represents the estimated pointwise posterior

means, while the shaded area shows the corresponding 95% credible intervals.

part modeling framework (Mullahy, 1998; Cameron and Trivedi, 2005), which doesn’t

appear to be straightforward in our context.

6 Discussion

In this paper we have introduced a new parameter, the GQTE, for assessing the effect

of a binary covariate on a response and a novel methodology to estimate it. The GQTE

generalizes the most common approaches available in the literature, that is, the well-

known average treatment effect (ATE) and the quantile treatment effect (QTE), since

it allows to evaluate the effect of a treatment on any arbitrary characteristic of the

outcome’s distributions under the two treatment conditions.

To estimate the GQTE we have proposed a Bayesian procedure, where we assume

that a monotone transformation of the quantile ratio is modeled as a smooth function

of the percentiles. This assumption allows to increase efficiency by borrowing infor-

mation across the two groups. The idea of quantile ratio smoothing has first been

introduced by Dominici et al. (2005). In the present work we extended that proposal

in several ways: 1) we let the link between the quantile ratio and the percentiles to

be general and application-specific, allowing to take into account the tail heaviness of
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the distributions involved in the analysis; 2) we derive a closed form expression for the

model likelihood; 3) our methodology is not limited to the mean difference between the

treated and the controls, but provides a comprehensive assessment of the treatment

effect; 4) finally, we embed the whole estimation process within a Bayesian framework

allowing to make inference on the GQTE ∆g(p) for any choice of the function g(·), and
for both symmetric and highly skewed outcomes.

The GQTE is a marginal measure in the sense that it provides an estimate of the

treatment effect over an entire population. In the econometrics literature this kind of

approach is usually termed the unconditional QTE (Firpo, 2007; Frölich and Melly,

2008) in contrast with the conditional QTE, where the treatment effect is determined

separately for different combinations of a set of covariates (Koenker and Bassett, 1978;

Koenker, 2005; Angrist and Pischke, 2009). The inclusion of covariates can improve

the efficiency of an estimator even when the primary goal of the analysis is a marginal

effect. Accordingly, methods have been proposed to extract marginal quantiles from

estimates of conditional quantiles (Machado and Mata, 2005; Frölich and Melly, 2008).

A challenge in extending our approach along these lines is the lack of an “iterated expec-

tation” result1 for the quantiles (see for example Angrist and Pischke, 2009, Chapter

7).

To further clarify our goals, we want to stress that in this paper no particular

emphasis has been placed on the causality issues that naturally comes into play when

the objective is the estimation of a treatment effect (see for example Rosenbaum, 2002,

2010; Rubin, 2006; Angrist and Pischke, 2009). More precisely, our intent here is solely

to provide a general measure of the effect of a binary treatment on a response variable,

together with a flexible approach to estimate it.

We compared the performance of our estimation approach with other highly flexible

methods in a simulation study for the mean difference between two populations. Our

study revealed that the GQTE performs generally better than the other competing

estimators at least in estimating the mean difference.

We have applied our methodology to the NMES data set to assess the effect of being

affected by smoking attributable diseases on the single hospitalization medical costs

distribution. We have found that having these diseases increases the average medical

bill amount as well as its variability in the population, while it reduces the probability

to incur in higher bills.

Our approach can be extended in various directions. The most promising research

question we can see involves taking into account individual level characteristics in

measuring the effect of a treatment. In our context, this would involve the estimation

of a conditional version of ∆g(p), something like ∆g(p|x) = g (Q1(p|x))− g (Q2(p|x)).
The clear advantage of including covariates would be an increase in the efficiency of the

1While for a standard linear model, in fact, the assumption E(Yi|Xi) = X ′

iβ does imply E(Yi) =

E(Xi)
′β, the same conclusion doesn’t hold for the conditional quantiles.
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estimates (Frölich and Melly, 2008). To control for systematic differences in covariates

between two populations, a common strategy is to group units into subclasses based on

covariate values, for example using propensity score matching, and then to apply our

method within strata of propensity scores (Rosenbaum, 2002, 2010), as implemented

for example in Dominici and Zeger (2005).

Currently we are considering only a binary treatment effect, so another important

line of research is the extension of the methods to categorical ordinal and to continuous

treatments.

A further direction for future research concerns the choice of the number of degrees

of freedom λ. In this paper we adopted the simple approach of choosing λ by minimizing

an empirical version of the L1 distance between the Y2 density estimate and its kernel

density estimate (see Subsection 3.7). More structured solutions can obviously be

considered. A natural extension would allow λ to be a random quantity to be estimated

together with all the other parameters using a trans-dimensional MCMC approach, like

for example the reversible jump algorithm (Green, 1995). While this solution would

allow to take into account also the uncertainty connected to the a priori ignorance

about the λ value, the consequence would be a dramatic increase in the computational

workload of the estimation algorithm.
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A Additional GQTE Examples

Together with the cases presented in Section 2, many other less conventional measures

of the difference between two distributions can be obtained by properly choosing the

g(·) function in the GQTE definition. For example, by choosing g(x) =
∫
xr dp we

obtain the difference between the population r-th moments

∆µr =

∫ 1

0

Q1(p)
r dp−

∫ 1

0

Q2(p)
r dp. (A.1)
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Using the fact that for a random variable Y with expected value µ, variance σ2 and

quantile function Q(p) it holds that (see Gilchrist, 2000 or Shorack, 2000)

σ2 =

∫ 1

0

[Q(p)− µ]2 dp =

∫ 1

0

Q(p)2 dp− µ2,

by suitably choosing the g(·) function, we recover the difference between the two pop-

ulation variances as

∆σ2 =

[∫ 1

0

Q1(p)
2 dp−

(∫ 1

0

Q1(p) dp

)2
]
−
[∫ 1

0

Q2(p)
2 dp−

(∫ 1

0

Q2(p) dp

)2
]

=

[∫ 1

0

Q1(p)
2 dp−

∫ 1

0

Q2(p)
2 dp

]
−
[(∫ 1

0

Q1(p) dp

)2

−
(∫ 1

0

Q2(p) dp

)2
]

= ∆µ2 −
(
µ2
1 − µ2

2

)
, (A.2)

However, the cases encompassed by the GQTE include many other quantile-based

indexes that are less frequently used in the literature, like the inter-p-range ipr(p) =

Q(1 − p) − Q(p), or the skewness-ratio sr(p) = [Q(1 − p) − Q(0.5)]/[Q(0.5) − Q(p)],

0 < p < 1, which provide robust measures of the scale and shape of a distribution (for a

list of these indexes see Gilchrist, 2000; Shorack, 2000; Parzen, 2004; Wang and Serfling,

2005; Brys et al., 2006). A quantity of particular interest to economists is the difference

between inter-decile ratios, defined as

Q1(0.9)

Q1(0.1)
− Q2(0.9)

Q2(0.1)
,

which is commonly used to assess the amount of inequality in a population (see

Frölich and Melly, 2008). The previous quantity can be easily generalized as follows

∆IR(p) =
Q1(1− p)

Q1(p)
− Q2(1 − p)

Q2(p)
, (A.3)

for any 0 < p < 0.5. Notice that all these indexes are obtainable from the general

definition (2.1) by properly choosing the function g(·).
As a last example, we consider a further GQTE special case that is based on the

so called tailweight function defined as

TW (p) =
q(p)

Q(p)
≡ d

dp
logQ(p) , 0 < p < 1 ,

which is used to quantify the probability allocated in the tails of a distribution. One

can compute the difference between the tailweight functions for two populations by

choosing the logarithmic derivative of the quantile function as the g(·) functional in

(2.1), that is

∆TW (p) = TW1(p)− TW2(p)

=
d

dp
logQ1(p)−

d

dp
logQ2(p)

=
d

dp

[
log

(
Q1(p)

Q2(p)

)]
. (A.4)
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If ∆TW (p) ≥ 0, we can conclude that the treatment is causing a thickening of the Y1

distribution tails as compared to those of Y2 if ∆TW (p) ≥ 0.Finally, note that, thanks

to the equivariance property of the quantiles, (A.4) can be written also as

∆TW (p) =
d

dp
logQ1(p)−

d

dp
logQ2(p)

=
d

dp
Q1,log(p)−

d

dp
Q2,log(p)

=
d

dp
[Q1,log(p)−Q2,log(p)]

=
d

dp
∆log(p) , (A.5)

where Qℓ,log, ℓ = 1, 2, indicates the quantile of the log-transformed data and ∆log(p)

denotes the parameter (2.2) calculated on the quantiles of the log-transformed data.

B Proof of Theorem 1 and Corollaries

Proof of Theorem 1. Differentiate (3.2) with respect to p to get

q1(p) = q2(p)h
−1 [X(p, λ)β] +X ′(p, λ)βQ2(p)

{
d

d (X(p, λ)β)
h−1 [X(p, λ)β]

}
,

(B.1)

where qℓ(p) = dQℓ(p)/dp denotes the so called quantile density function for the pop-

ulation ℓ = {1, 2}, while X ′(p, λ) corresponds to the derivative of X(p, λ), 0 < p < 1

(properly resized because a constant is normally included in the design matrixX(p, λ)).

Apply now to both q1(p) and q2(p) the following relationship between the quantile

density and density quantile functions (see for example Gilchrist, 2000; Parzen, 1979,

2004)

f(Q(p)) q(p) = 1 , (B.2)

to get the expression

1

f1(Q1(p)|η)
=

1

f2(Q2(p)|β,η)
h−1 [X(p, λ)β]

+X ′(p, λ)βQ2(p)

{
d

d (X(p, λ)β)
h−1 [X(p, λ)β]

}
, (B.3)

and hence

f2(Q2(p)|β,η) = f1(Q1(p)|η)h−1[X(p,λ)β]

1−f1(Q1(p)|η)X′(p,λ)βQ2(p){ d
d(X(p,λ) β)

h−1[X(p,λ)β]} . (B.4)

Finally, substituting (3.2) in place of Q1(p) proves the main statement.

Moreover, f2(Q2(p)|β,η) is a proper density function because:

• f2(Q2(p)|β,η) ≥ 0, for any 0 < p < 1; since f1 (Q1(p)|η) ≥ 0 and h−1 [X(p, λ)β] >

0 because, as assumed in (3.1), it is the ratio of two positive quantile functions,

this fact can be proved by showing that the denominator of (B.4) is nonnegative

which is ensured by the constraint (3.5).
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•
∫ 1

0
f2(Q2(p)|β,η)q2(p)dp = 1, which is true because f2(Q2(p)|β,η)q2(p) = 1 by

construction.

A couple of immediate consequences of Theorem 1 regard two cases that occur

frequently in practice. We provide the details about these situations in the next two

corollaries.

Corollary 1. Let the same assumptions of Theorem 1 hold. Suppose additionally that

h(x) = x. If for every 0 < p < 1 the vector β satisfies the constraint

X ′(p, λ)β

X(p, λ)β
≤ 1

f1 (Q1(p))Q1(p)
, (B.5)

then the density quantile function f2(Q2(p)|β,η) for Y2 is

f2(Q2(p)|β,η) =
f1 (Q2(p)X(p, λ)β|η)X(p, λ)β

1− f1 (Q2(p)X(p, λ)β|η)X ′(p, λ)βQ2(p)
. (B.6)

Corollary 2. Let the same assumptions of Theorem 1 hold. Suppose additionally that

h(x) = log(x). If for every 0 < p < 1 the vector β satisfies the constraint

X ′(p, λ)β ≤ 1

f1 (Q1(p))Q1(p)
, (B.7)

then the density quantile function f2(Q2(p)|β,η) for Y2 is given by

f2(Q2(p)|β,η) =
f1
(
Q2(p) e

X(p,λ)β|η
)

e−X(p,λ)β − f1
(
Q2(p) eX(p,λ)β|η

)
X ′(p, λ)βQ2(p)

. (B.8)

Note that in these two situations, the general constraint (3.5) reduces to a linear

constraint on β.

C Proofs of the Special Cases

Case 1: Y1 is Uniform and X(p, λ = 0) = 1. Here Y1|θ1 ∼ U [ 0, θ1] and h(x) = x. In

this case Q1(p)/Q2(p) = β0. Hence the density, distribution and quantile functions of

Y1 are respectively

f1(y1|θ1) =
1

θ1
I[0, θ1]{y1}

F1(y1|θ1) =
y1
θ1

Q1(p|θ1) = θ1p , 0 < p < 1 .

From (B.6) it follows that

f2(Q2(p)|θ1, β0) =
1

θ1
I[0, θ1]{Q2(p)β0} β0

=
β0

θ1
I[0, θ1/β0]{Q2(p)} ,
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which is the density quantile function of a U [0, θ2] random variable with θ2 = θ1/β0.

Case 2: Y1 is Log-normal and X(p, λ = 1) = [1,Φ−1(p)]. Assume Y1|µ1, σ
2
1 ∼

Ln(µ1, σ
2
1) and h(x) = log(x). In this case log{Q1(p)/Q2(p)} = β0 + β1 Φ

−1(p), where

Φ−1(p) is the quantile function of a standard normal random variable. The density,

distribution and quantile functions of Y1 are given by

f1(y1|µ1, σ
2
1) =

1

y1
√
2πσ1

exp

{
− (log y1 − µ1)

2

2σ2
1

}

F1(y1|µ1, σ
2
1) = Φ

(
log y1 − µ1

σ1

)

Q1(p|µ1, σ
2
1) = exp

{
µ1 + σ1Φ

−1(p)
}
, 0 < p < 1 .

Then by (B.8) it follows

f2(Q2(p)|µ1, σ
2
1 , β0, β1) =

1√
2πσ1

exp

{

− (µ1+σ1Φ−1(p)−µ1)
2

2σ2
1

}

exp{µ1+σ1Φ−1(p)}

exp {−β0 − β1Φ−1(p)}


1− 1√

2πσ1

exp

{

− (µ1+σ1Φ−1(p)−µ1)
2

2σ2
1

}

exp{µ1+σ1Φ−1(p)}

×β1
1

1√
2π

exp

{

− [Φ−1(p)]2

2

} exp {µ1 + σ1Φ−1(p)}




=
1√

2π(σ1 − β1)

exp

{
− [Φ−1(p)]2

2

}

exp { (µ1 − β0) + (σ1 − β1)Φ−1(p)}

=
1√

2π(σ1 − β1)

exp

{
− [(µ1−β0)+(σ1−β1)Φ

−1(p)−(µ1−β0)]
2

2(σ1−β1)2

}

exp { (µ1 − β0) + (σ1 − β1)Φ−1(p)}

=
1

Q2(p)
√
2π(σ1 − β1)

exp

{
− [logQ2(p)− (µ1 − β0)]

2

2(σ1 − β1)2

}
,

which is the density quantile function of a Ln(µ2, σ
2
2) random variable with µ2 =

(µ1 − β0) and σ2 = (σ1 − β1).

Case 3: Y1 is Pareto and X(p, λ = 1) = [1, log(1 − p)]. Now Y1|a1, b1 ∼ Pa(a1, b1)

and h(x) = log(x). In this case log{Q1(p)/Q2(p)} = β0 + β1 log(1 − p). The density,

distribution and quantile functions of Y1 are given by

f1(y1|a1, b1) = a1b
a1
1 y

−(a1+1)
1

F1(y1|a1, b1) = 1− ba1

1 y−a1

1

Q1(p|a1, b1) = b1(1 − p)
− 1

a1 , 0 < p < 1 .
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Then (B.8) implies

f2(Q2(p)|a1, b1, β0, β1) =
a1b

a1
1

[

b1(1−p)
− 1

a1

]−(a1+1)

exp{−β0−β1 log(1−p)}
{

1+a1b
a1
1

[

b1(1−p)
− 1

a1

]−(a1+1)
β1
1−p

b1(1−p)
− 1

a1

}

=
a1

a1β1 + 1

(
b1e

−β0
)−1

(1− p)
a1β1+1

a1
+1

=
a1

a1β1 + 1

(
b1e

−β0
) a1

a1β1+1 Q2(p)
−
(

a1
a1β1+1+1

)

,

which is the density quantile function of a Pa(a2, b2) random variable with a2 = a1

a1β1+1

and b2 = b1e
−β0 .

D Details About the Estimation of Other Cases

One can estimate the impact of a binary treatment on the r-th moments, denoted as

∆µr in (A.1), by computing

∆̂
(m)
µr =

1

n2

n2∑

i=1

{
y2(i)h

−1
[
X (p2i, λ) β̂

(m)
]}r

− 1

n1

n1∑

i=1

[
y1(i)

{
h−1

[
X (p1i, λ) β̂

(m)
]}−1

]r
. (D.1)

The last expression allows to estimate the treatment effect on the population variances,

defined in (A.2), which is given by

∆̂
(m)
σ2 = ∆̂

(m)
µ2 −





(
1

n2

n2∑

i=1

y2(i)h
−1
[
X (p2i, λ) β̂

(m)
])2

−
(

1

n1

n1∑

i=1

y1(i)

{
h−1

[
X (p1i, λ) β̂

(m)
]}−1

)2


 . (D.2)

As a concluding example, the effect of a binary treatment on the tailweight func-

tions of two distributions, introduced in (A.4), can be obtained by first computing the

posterior draws

∆̂
(m)
TW (p) =

d

dp

{
log
(
h−1

[
X(p, λ)β̂(m)

])}
, (D.3)

and then by applying (3.10). When h(x) = log(x), (D.3) becomes

∆̂
(m)
TW (p) = X ′(p, λ)β̂(m), (D.4)
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and the estimate of ∆TW (p) is

∆̂TW (p) =
1

M

M∑

m=1

X ′(p, λ)β̂(m)

= X ′(p, λ)

(
1

M

M∑

m=1

β̂(m)

)

= X ′(p, λ)β̂, (D.5)

with β̂ = 1
M

∑M
m=1 β̂

(m), the posterior mean estimate of β.
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