15 research outputs found

    m-AAA and i-AAA complexes coordinate to regulate OMA1, the stress-activated supervisor of mitochondrial dynamics.

    Get PDF
    The proteolytic processing of dynamin like GTPase OPA1, mediated by the activity of both YME1L1 (i-AAA protease complex) and OMA1, is a crucial step in the regulation of mitochondrial dynamics. OMA1 is a zinc metallopeptidase of the inner mitochondrial membrane that undergoes pre-activating proteolytic and auto-proteolytic cleavage after mitochondrial import. Here, we identify AFG3L2 (m-AAA complex) as the major protease mediating this event by maturing the pre-pro-OMA1 of 60 kDa to the pro-OMA1 form of 40 kDa by severing the amino-terminal part without recognizing specific consensus sequence. Therefore, m-AAA and i-AAA complexes coordinately regulate OMA1 processing and turnover, and consequently OPA1 isoforms, thus adding new information in the comprehension of the molecular mechanisms in mitochondrial dynamics and of neurodegenerative diseases affected by these phenomena

    Respiratory dysfunction by AFG3L2 deficiency causes decreased mitochondrial calcium uptake via organellar network fragmentation

    Get PDF
    The mitochondrial protein AFG3L2 forms homo-oligomeric and hetero-oligomeric complexes with paraplegin in the inner mitochondrial membrane, named m-AAA proteases. These complexes are in charge of quality control of misfolded proteins and participate in the regulation of OPA1 proteolytic cleavage, required for mitochondrial fusion. Mutations in AFG3L2 cause spinocerebellar ataxia type 28 and a complex neurodegenerative syndrome of childhood. In this study, we demonstrated that the loss of AFG3L2 in mouse embryonic fibroblasts (MEFs) reduces mitochondrial Ca2+ uptake capacity. This defect is neither a consequence of global alteration in cellular Ca2+ homeostasis nor of the reduced driving force for Ca2+ internalization within mitochondria, since cytosolic Ca2+ transients and mitochondrial membrane potential remain unaffected. Moreover, experiments in permeabilized cells revealed unaltered mitochondrial Ca2+ uptake speed in Afg3l2−/− cells, indicating the presence of functional Ca2+ uptake machinery. Our results show that the defective Ca2+ handling in Afg3l2−/− cells is caused by fragmentation of the mitochondrial network, secondary to respiratory dysfunction and the consequent processing of OPA1. This leaves a number of mitochondria devoid of connections to the ER and thus without Ca2+ elevations, hampering the proper Ca2+ diffusion along the mitochondrial network. The recovery of mitochondrial fragmentation in Afg3l2−/− MEFs by overexpression of OPA1 rescues the impaired mitochondrial Ca2+ buffering, but fails to restore respiration. By linking mitochondrial morphology and Ca2+ homeostasis, these findings shed new light in the molecular mechanisms underlining neurodegeneration caused by AFG3L2 mutation

    Genome-wide expression profiling and functional characterization of SCA28 lymphoblastoid cell lines reveal impairment in cell growth and activation of apoptotic pathways

    Get PDF
    BACKGROUND: SCA28 is an autosomal dominant ataxia associated with AFG3L2 gene mutations. We performed a whole genome expression profiling using lymphoblastoid cell lines (LCLs) from four SCA28 patients and six unrelated healthy controls matched for sex and age. METHODS: Gene expression was evaluated with the Affymetrix GeneChip Human Genome U133A 2.0 Arrays and data were validated by real-time PCR. RESULTS: We found 66 genes whose expression was statistically different in SCA28 LCLs, 35 of which were up-regulated and 31 down-regulated. The differentially expressed genes were clustered in five functional categories: (1) regulation of cell proliferation; (2) regulation of programmed cell death; (3) response to oxidative stress; (4) cell adhesion, and (5) chemical homeostasis. To validate these data, we performed functional experiments that proved an impaired SCA28 LCLs growth compared to controls (p\u2009<\u20090.005), an increased number of cells in the G0/G1 phase (p\u2009<\u20090.001), and an increased mortality because of apoptosis (p\u2009<\u20090.05). We also showed that respiratory chain activity and reactive oxygen species levels was not altered, although lipid peroxidation in SCA28 LCLs was increased in basal conditions (p\u2009<\u20090.05). We did not detect mitochondrial DNA large deletions. An increase of TFAM, a crucial protein for mtDNA maintenance, and of DRP1, a key regulator of mitochondrial dynamic mechanism, suggested an alteration of fission/fusion pathways. CONCLUSIONS: Whole genome expression profiling, performed on SCA28 LCLs, allowed us to identify five altered functional categories that characterize the SCA28 LCLs phenotype, the first reported in human cells to our knowledge. \ua9 2013 Mancini et al.; licensee BioMed Central Ltd

    The WRB Subunit of the Get3 Receptor is Required for the Correct Integration of its Partner CAML into the ER

    No full text
    Calcium-modulating cyclophilin ligand (CAML), together with Tryptophan rich basic protein (WRB, Get1 in yeast), constitutes the mammalian receptor for the Transmembrane Recognition Complex subunit of 40 kDa (TRC40, Get3 in yeast), a cytosolic ATPase with a central role in the post-translational targeting pathway of tail-anchored (TA) proteins to the endoplasmic reticulum (ER) membrane. CAML has also been implicated in other cell-specific processes, notably in immune cell survival, and has been found in molar excess over WRB in different cell types. Notwithstanding the stoichiometric imbalance, WRB and CAML depend strictly on each other for expression. Here, we investigated the mechanism by which WRB impacts CAML levels. We demonstrate that CAML, generated in the presence of sufficient WRB levels, is inserted into the ER membrane with three transmembrane segments (TMs) in its C-terminal region. By contrast, without sufficient levels of WRB, CAML fails to adopt this topology, and is instead incompletely integrated to generate two aberrant topoforms; these congregate in ER-associated clusters and are degraded by the proteasome. Our results suggest that WRB, a member of the recently proposed Oxa1 superfamily, acts catalytically to assist the topogenesis of CAML and may have wider functions in membrane biogenesis than previously appreciated

    SETD5 haploinsufficiency affects mitochondrial compartment in neural cells

    No full text
    Abstract Background Neurodevelopmental disorders (NDDs) are heterogeneous conditions due to alterations of a variety of molecular mechanisms and cell dysfunctions. SETD5 haploinsufficiency leads to NDDs due to chromatin defects. Epigenetic basis of NDDs has been reported in an increasing number of cases while mitochondrial dysfunctions are more common within NDD patients than in the general population. Methods We investigated in vitro neural stem cells as well as the brain of the Setd5 haploinsufficiency mouse model interrogating its transcriptome, analyzing mitochondrial structure, biochemical composition, and dynamics, as well as mitochondrial functionality. Results Mitochondrial impairment is facilitated by transcriptional aberrations originated by the decrease of the SETD5 enzyme. Low levels of SETD5 resulted in fragmented mitochondria, reduced mitochondrial membrane potential, and ATP production both in neural precursors and neurons. Mitochondria were also mislocalized in mutant neurons, with reduced organelles within neurites and synapses. Limitations We found several defects in the mitochondrial compartment; however, we can only speculate about their position in the hierarchy of the pathological mechanisms at the basis of the disease. Conclusions Our study explores the interplay between chromatin regulation and mitochondria functions as a possible important aspect of SETD5-associated NDD pathophysiology. Our data, if confirmed in patient context, suggest that the mitochondrial activity and dynamics may represent new therapeutic targets for disorders associated with the loss of SETD5

    Sustained OMA1-mediated integrated stress response is beneficial for spastic ataxia type 5

    No full text
    : AFG3L2 is a mitochondrial protease exerting protein quality control in the inner mitochondrial membrane (IMM). Heterozygous AFG3L2 mutations cause Spinocerebellar Ataxia type 28 (SCA28) or Dominant Optic Atrophy type 12 (DOA12), while biallelic AFG3L2 mutations result in the rare and severe Spastic Ataxia type 5 (SPAX5). The clinical spectrum of SPAX5 includes childhood-onset cerebellar ataxia, spasticity, dystonia, and myoclonic epilepsy. We previously reported that the absence or mutation of AFG3L2 leads to the accumulation of mitochondria-encoded proteins, causing the over-activation of the stress-sensitive protease OMA1, which over-processes OPA1, leading to mitochondrial fragmentation. Recently, OMA1 has been identified as the pivotal player communicating mitochondrial stress to the cytosol via a pathway involving the IMM protein DELE1 and the cytosolic kinase HRI, thus eliciting the integrated stress response (ISR). In general, the ISR reduces global protein synthesis and drives the expression of cytoprotective genes that allow cells to endure proteotoxic stress. However, the relevance of the OMA1-DELE1-HRI axis in vivo, and especially in a human CNS disease context, has been poorly documented so far. In this work, we demonstrated that mitochondrial proteotoxicity in the absence/mutation of AFG3L2 activates the OMA1-DELE1-HRI pathway eliciting the ISR. We indeed found enhanced OMA1-dependent processing of DELE1 upon depletion of AFG3L2. Also, in both skin fibroblasts from SPAX5 patients (including a novel case) and in the cerebellum of Afg3l2-/- mice we detected increased phosphorylation of the α-subunit of the eukaryotic translation initiation factor 2 (eIF2α), increased levels of ATF4 and strong upregulation of its downstream targets (Chop, Chac1, Ppp1r15a and Ffg21). Silencing of DELE1 or HRI in SPAX5 fibroblasts (where OMA1 is overactivated at basal state) reduces eIF2α phosphorylation and affects cell growth. In agreement, pharmacological potentiation of ISR via Sephin-1, a drug that selectively inhibits the stress-induced eIF2alpha phosphatase GADD34 (encoded by Ppp1r15a), improved cell growth of SPAX5 fibroblasts, and cell survival and dendritic arborization ex vivo in primary Afg3l2-/- Purkinje neurons (PNs). Notably, Sephin-1 treatment in vivo extended the life span of Afg3l2-/- mice, improved PN morphology, mitochondrial ultrastructure and respiratory capacity. These data indicate that activation of the OMA1-DELE1-HRI pathway is protective in the context of SPAX5. Pharmacological tuning of the ISR may represent a future therapeutic strategy for SPAX5 and other cerebellar ataxias caused by impaired mitochondrial proteostasis
    corecore