74 research outputs found

    Neural crest cell-derived VEGF promotes embryonic jaw extension

    Get PDF
    Jaw morphogenesis depends on the growth of Meckel’s cartilage during embryogenesis. However, the cell types and signals that promote chondrocyte proliferation for Meckel’s cartilage growth are poorly defined. Here we show that neural crest cells (NCCs) and their derivatives provide an essential source of the vascular endothelial growth factor (VEGF) to enhance jaw vascularization and stabilize the major mandibular artery. We further show in two independent mouse models that blood vessels promote Meckel’s cartilage extension. Coculture experiments of arterial tissue with NCCs or chondrocytes demonstrated that NCC-derived VEGF promotes blood vessel growth and that blood vessels secrete factors to instruct chondrocyte proliferation. Computed tomography and X-ray scans of patients with hemifacial microsomia also showed that jaw hypoplasia correlates with mandibular artery dysgenesis. We conclude that cranial NCCs and their derivatives provide an essential source of VEGF to support blood vessel growth in the developing jaw, which in turn is essential for normal chondrocyte proliferation, and therefore jaw extension

    Dysfunctional mechanotransduction through the YAP/TAZ/Hippo pathway as a feature of chronic disease

    Get PDF
    In order to ascertain their external environment, cells and tissues have the capability to sense and process a variety of stresses, including stretching and compression forces. These mechanical forces, as experienced by cells and tissues, are then converted into biochemical signals within the cell, leading to a number of cellular mechanisms being activated, including proliferation, differentiation and migration. If the conversion of mechanical cues into biochemical signals is perturbed in any way, then this can be potentially implicated in chronic disease development and processes such as neurological disorders, cancer and obesity. This review will focus on how the interplay between mechanotransduction, cellular structure, metabolism and signalling cascades led by the Hippo-YAP/TAZ axis can lead to a number of chronic diseases and suggest how we can target various pathways in order to design therapeutic targets for these debilitating diseases and conditions

    Axonal and neuromuscular synaptic phenotypes in Wld(S), SOD1(G93A) and ostes mutant mice identified by fiber-optic confocal microendoscopy

    Get PDF
    We used live imaging by fiber-optic confocal microendoscopy (CME) of yellow fluorescent protein (YFP) expression in motor neurons to observe and monitor axonal and neuromuscular synaptic phenotypes in mutant mice. First, we visualized slow degeneration of axons and motor nerve terminals at neuromuscular junctions following sciatic nerve injury in WldS mice with slow Wallerian degeneration. Protection of axotomized motor nerve terminals was much weaker in WldS heterozygotes than in homozygotes. We then induced covert modifiers of axonal and synaptic degeneration in heterozygous WldS mice, by N-ethyl-Nnitrosourea (ENU) mutagenesis, and used CME to identify candidate mutants that either enhanced or suppressed axonal or synaptic degeneration. From 219 of the F1 progeny of ENU-mutagenized BALB/c mice and thy1.2-YFP16/WldS mice, CME revealed six phenodeviants with suppression of synaptic degeneration. Inheritance of synaptic protection was confirmed in three of these founders, with evidence of Mendelian inheritance of a dominant mutation in one of them (designated CEMOP_S5). We next applied CME repeatedly to living WldS mice and to SOD1G93A mice, an animal model of motor neuron disease, and observed degeneration of identified neuromuscular synapses over a 1–4 day period in both of these mutant lines. Finally, we used CME to observe slow axonal regeneration in the ENU-mutant ostes mouse strain. The data show that CME can be used to monitor covert axonal and neuromuscular synaptic pathology and, when combined with mutagenesis, to identify genetic modifiers of its progression in vivo

    Macrophage-induced blood vessels guide Schwann cell-mediated regeneration of peripheral nerves

    Get PDF
    The peripheral nervous system has remarkable regenerative capacities in that it can repair a fully cut nerve. This requires Schwann cells to migrate collectively to guide regrowing axons across a 'bridge' of new tissue, which forms to reconnect a severed nerve. Here we show that blood vessels direct the migrating cords of Schwann cells. This multicellular process is initiated by hypoxia, selectively sensed by macrophages within the bridge, which via VEGF-A secretion induce a polarized vasculature that relieves the hypoxia. Schwann cells then use the blood vessels as "tracks" to cross the bridge taking regrowing axons with them. Importantly, disrupting the organization of the newly formed blood vessels in vivo, either by inhibiting the angiogenic signal or by re-orienting them, compromises Schwann cell directionality resulting in defective nerve repair. This study provides important insights into how the choreography of multiple cell-types is required for the regeneration of an adult tissue

    Rescue of mutant rhodopsin traffic by metformin-induced AMPK activation accelerates photoreceptor degeneration

    Get PDF
    Protein misfolding caused by inherited mutations leads to loss of protein function and potentially toxic ‘gain of function’, such as the dominant P23H rhodopsin mutation that causes retinitis pigmentosa (RP). Here, we tested whether the AMPK activator metformin could affect the P23H rhodopsin synthesis and folding. In cell models, metformin treatment improved P23H rhodopsin folding and traffic. In animal models of P23H RP, metformin treatment successfully enhanced P23H traffic to the rod outer segment, but this led to reduced photoreceptor function and increased photoreceptor cell death. The metformin-rescued P23H rhodopsin was still intrinsically unstable and led to increased structural instability of the rod outer segments. These data suggest that improving the traffic of misfolding rhodopsin mutants is unlikely to be a practical therapy, because of their intrinsic instability and long half-life in the outer segment, but also highlights the potential of altering translation through AMPK to improve protein function in other protein misfolding diseases

    Methane emissions from underground gas storage in California

    Get PDF
    Accurate and timely detection, quantification, and attribution of methane emissions from Underground Gas Storage (UGS) facilities is essential for improving confidence in greenhouse gas inventories, enabling emission mitigation by facility operators, and supporting efforts to assess facility integrity and safety. We conducted multiple airborne surveys of the 12 active UGS facilities in California between January 2016 and November 2017 using advanced remote sensing and in situ observations of near-surface atmospheric methane (CH₄). These measurements where combined with wind data to derive spatially and temporally resolved methane emission estimates for California UGS facilities and key components with spatial resolutions as small as 1–3 m and revisit intervals ranging from minutes to months. The study spanned normal operations, malfunctions, and maintenance activity from multiple facilities including the active phase of the Aliso Canyon blowout incident in 2016 and subsequent return to injection operations in summer 2017. We estimate that the net annual methane emissions from the UGS sector in California averaged between 11.0 ± 3.8 GgCH₄ yr⁻¹ (remote sensing) and 12.3 ± 3.8 GgCH₄ yr⁻¹ (in situ). Net annual methane emissions for the 7 facilities that reported emissions in 2016 were estimated between 9.0 ± 3.2 GgCH₄ yr⁻¹ (remote sensing) and 9.5 ± 3.2 GgCH₄ yr⁻¹ (in situ), in both cases around 5 times higher than reported. The majority of methane emissions from UGS facilities in this study are likely dominated by anomalous activity: higher than expected compressor loss and leaking bypass isolation valves. Significant variability was observed at different time-scales: daily compressor duty-cycles and infrequent but large emissions from compressor station blow-downs. This observed variability made comparison of remote sensing and in situ observations challenging given measurements were derived largely at different times, however, improved agreement occurred when comparing simultaneous measurements. Temporal variability in emissions remains one of the most challenging aspects of UGS emissions quantification, underscoring the need for more systematic and persistent methane monitoring

    Metabolites of cannabis induce cardiac toxicity and morphological alterations in cardiac myocytes

    Get PDF
    Cannabis is one of the most commonly used recreational drugs worldwide. Rrecent epidemiology studies have linked increased cardiac complications to cannabis use. However, this literature is predominantly based on case incidents and post-mortem investigations. This study elucidates the molecular mechanism of Δ9-tetrahydrocannabinol (THC), and its primary metabolites 11-Hydroxy-Δ9-THC (THC-OH) and 11-nor-9-carboxy-Δ⁹-tetrahydrocannabinol (THC-COOH). Treatment of cardiac myocytes with THC-OH and THC-COOH increased cell migration and proliferation (p < 0.05), with no effect on cell adhesion, with higher doses (250–100 ng/mL) resulting in increased cell death and significant deterioration in cellular architecture. Conversely, no changes in cell morphology or viability were observed in response to THC. Expression of key ECM proteins α-SMA and collagen were up-regulated in response to THC-OH and THC-COOH treatments with concomitant modulation of PI3K and MAPK signalling. Investigations in the planarian animal model Polycelis nigra demonstrated that treatments with cannabinoid metabolites resulted in increased protein deposition at transection sites while higher doses resulted in significant lethality and decline in regeneration. These results highlight that the key metabolites of cannabis elicit toxic effects independent of the parent and psychoactive compound, with implications for cardiotoxicity relating to hypertrophy and fibrogenesis

    Upregulation of PKD1L2 provokes a complex neuromuscular disease in the mouse

    Get PDF
    Following a screen for neuromuscular mouse mutants, we identified ostes, a novel N-ethyl N-nitrosourea-induced mouse mutant with muscle atrophy. Genetic and biochemical evidence shows that upregulation of the novel, uncharacterized transient receptor potential polycystic (TRPP) channel PKD1L2 (polycystic kidney disease gene 1-like 2) underlies this disease. Ostes mice suffer from chronic neuromuscular impairments including neuromuscular junction degeneration, polyneuronal innervation and myopathy. Ectopic expression of PKD1L2 in transgenic mice reproduced the ostes myopathic changes and, indeed, caused severe muscle atrophy in Tg(Pkd1l2)/Tg(Pkd1l2) mice. Moreover, double-heterozygous mice (ostes/+, Tg(Pkd1l2)/0) suffer from myopathic changes more profound than each heterozygote, indicating positive correlation between PKD1L2 levels and disease severity. We show that, in vivo, PKD1L2 primarily associates with endogenous fatty acid synthase in normal skeletal muscle, and these proteins co-localize to costameric regions of the muscle fibre. In diseased ostes/ostes muscle, both proteins are upregulated, and ostes/ostes mice show signs of abnormal lipid metabolism. This work shows the first role for a TRPP channel in neuromuscular integrity and disease

    Frontotemporal dementia and its subtypes: a genome-wide association study

    Get PDF
    SummaryBackground Frontotemporal dementia (FTD) is a complex disorder characterised by a broad range of clinical manifestations, differential pathological signatures, and genetic variability. Mutations in three genes—MAPT, GRN, and C9orf72—have been associated with FTD. We sought to identify novel genetic risk loci associated with the disorder. Methods We did a two-stage genome-wide association study on clinical FTD, analysing samples from 3526 patients with {FTD} and 9402 healthy controls. To reduce genetic heterogeneity, all participants were of European ancestry. In the discovery phase (samples from 2154 patients with {FTD} and 4308 controls), we did separate association analyses for each {FTD} subtype (behavioural variant FTD, semantic dementia, progressive non-fluent aphasia, and {FTD} overlapping with motor neuron disease FTD-MND), followed by a meta-analysis of the entire dataset. We carried forward replication of the novel suggestive loci in an independent sample series (samples from 1372 patients and 5094 controls) and then did joint phase and brain expression and methylation quantitative trait loci analyses for the associated (p&lt;5 × 10−8) single-nucleotide polymorphisms. Findings We identified novel associations exceeding the genome-wide significance threshold (p&lt;5 × 10−8). Combined (joint) analyses of discovery and replication phases showed genome-wide significant association at 6p21.3, \{HLA\} locus (immune system), for rs9268877 (p=1·05 × 10−8; odds ratio=1·204 95% \{CI\} 1·11–1·30), rs9268856 (p=5·51 × 10−9; 0·809 0·76–0·86) and rs1980493 (p value=1·57 × 10−8, 0·775 0·69–0·86) in the entire cohort. We also identified a potential novel locus at 11q14, encompassing RAB38/CTSC (the transcripts of which are related to lysosomal biology), for the behavioural \{FTD\} subtype for which joint analyses showed suggestive association for rs302668 (p=2·44 × 10−7; 0·814 0·71–0·92). Analysis of expression and methylation quantitative trait loci data suggested that these loci might affect expression and methylation in cis. Interpretation Our findings suggest that immune system processes (link to 6p21.3) and possibly lysosomal and autophagy pathways (link to 11q14) are potentially involved in FTD. Our findings need to be replicated to better define the association of the newly identified loci with disease and to shed light on the pathomechanisms contributing to FTD. Funding The National Institute of Neurological Disorders and Stroke and National Institute on Aging, the Wellcome/MRC Centre on Parkinson's disease, Alzheimer's Research UK, and Texas Tech University Health Sciences Center
    corecore