12 research outputs found

    Tomato Pathogenesis-related Protein Genes are Expressed in Response to Trialeurodes vaporariorum and Bemisia tabaci Biotype B Feeding

    Get PDF
    The temporal and spatial expression of tomato wound- and defense-response genes to Bemisia tabaci biotype B (the silverleaf whitefly) and Trialeurodes vaporariorum (the greenhouse whitefly) feeding were characterized. Both species of whiteflies evoked similar changes in tomato gene expression. The levels of RNAs for the methyl jasmonic acid (MeJA)- or ethylene-regulated genes that encode the basic β-1,3-glucanase (GluB), basic chitinase (Chi9), and Pathogenesis-related protein-1 (PR-1) were monitored. GluB and Chi9 RNAs were abundant in infested leaves from the time nymphs initiated feeding (day 5). In addition, GluB RNAs accumulated in apical non-infested leaves. PR-1 RNAs also accumulated after whitefly feeding. In contrast, the ethylene- and salicylic acid (SA)-regulated Chi3 and PR-4 genes had RNAs that accumulated at low levels and GluAC RNAs that were undetectable in whitefly-infested tomato leaves. The changes in Phenylalanine ammonia lyase5 (PAL5) were variable; in some, but not all infestations, PAL5 RNAs increased in response to whitefly feeding. PAL5 RNA levels increased in response to MeJA, ethylene, and abscisic acid, and declined in response to SA. Transcripts from the wound-response genes, leucine aminopeptidase (LapA1) and proteinase inhibitor 2 (pin2), were not detected following whitefly feeding. Furthermore, whitefly infestation of transgenic LapA1:GUS tomato plants showed that whitefly feeding did not activate the LapA1 promoter, although crushing of the leaf lamina increased GUS activity up to 40 fold. These studies indicate that tomato plants perceive B. tabaci and T. vaporariorum in a manner similar to baterical pathogens and distinct from tissue-damaging insects

    Functional impairment of systemic scleroderma patients with digital ulcerations: Results from the DUO registry

    Get PDF

    Demographic, clinical and antibody characteristics of patients with digital ulcers in systemic sclerosis: data from the DUO Registry

    Get PDF
    OBJECTIVES: The Digital Ulcers Outcome (DUO) Registry was designed to describe the clinical and antibody characteristics, disease course and outcomes of patients with digital ulcers associated with systemic sclerosis (SSc). METHODS: The DUO Registry is a European, prospective, multicentre, observational, registry of SSc patients with ongoing digital ulcer disease, irrespective of treatment regimen. Data collected included demographics, SSc duration, SSc subset, internal organ manifestations, autoantibodies, previous and ongoing interventions and complications related to digital ulcers. RESULTS: Up to 19 November 2010 a total of 2439 patients had enrolled into the registry. Most were classified as either limited cutaneous SSc (lcSSc; 52.2%) or diffuse cutaneous SSc (dcSSc; 36.9%). Digital ulcers developed earlier in patients with dcSSc compared with lcSSc. Almost all patients (95.7%) tested positive for antinuclear antibodies, 45.2% for anti-scleroderma-70 and 43.6% for anticentromere antibodies (ACA). The first digital ulcer in the anti-scleroderma-70-positive patient cohort occurred approximately 5 years earlier than the ACA-positive patient group. CONCLUSIONS: This study provides data from a large cohort of SSc patients with a history of digital ulcers. The early occurrence and high frequency of digital ulcer complications are especially seen in patients with dcSSc and/or anti-scleroderma-70 antibodies

    Arabidopsis Transcriptome Changes in Response to Phloem-Feeding Silverleaf Whitefly Nymphs. Similarities and Distinctions in Responses to Aphids

    No full text
    Phloem-feeding pests cause extensive crop damage throughout the world, yet little is understood about how plants perceive and defend themselves from these threats. The silverleaf whitefly (SLWF; Bemisia tabaci type B) is a good model for studying phloem-feeding insect-plant interactions, as SLWF nymphs cause little wounding and have a long, continuous interaction with the plant. Using the Affymetrix ATH1 GeneChip to monitor the Arabidopsis (Arabidopsis thaliana) transcriptome, 700 transcripts were found to be up-regulated and 556 down-regulated by SLWF nymphs. Closer examination of the regulation of secondary metabolite (glucosinolate) and defense pathway genes after SLWF-instar feeding shows that responses were qualitatively and quantitatively different from chewing insects and aphids. In addition to the RNA profile distinctions, analysis of SLWF performance on wild-type and phytoalexin-deficient4 (pad4) mutants suggests aphid and SLWF interactions with Arabidopsis were distinct. While pad4-1 mutants were more susceptible to aphids, SLWF development on pad4-1 and wild-type plants was similar. Furthermore, although jasmonic acid genes were repressed and salicylic acid-regulated genes were induced after SLWF feeding, cytological staining of SLWF-infested tissue showed that pathogen defenses, such as localized cell death and hydrogen peroxide accumulation, were not observed. Like aphid and fungal pathogens, callose synthase gene RNAs accumulated and callose deposition was observed in SLWF-infested tissue. These results provide a more comprehensive understanding of phloem-feeding insect-plant interactions and distinguish SLWF global responses

    Leucine Aminopeptidase Regulates Defense and Wound Signaling in Tomato Downstream of Jasmonic Acid[W]

    No full text
    Leucine aminopeptidase A (LapA) is a late wound-response gene of tomato (Solanum lycopersicum). To elucidate the role of LapA, transgenic plants that overexpressed or abolished LapA gene expression were used. The early wound-response gene RNA levels were similar in wild-type and Lap-silenced (LapA-SI), -antisense (LapA-AS), and -overexpressing (LapA-OX) plants. By contrast, late wound-response gene RNA levels and protection against Manduca sexta damage were influenced by LapA RNA and protein levels. While LapA-OX plants had elevated levels of LapA RNAs and protein, ectopic expression of LapA was not sufficient to induce Pin (Ser proteinase inhibitor) or PPO (polyphenol oxidase) transcripts in nonwounded leaves. M. sexta larvae damaged less foliage and displayed delays in growth and development when feeding on LapA-OX plants. By contrast, LapA-SI and LapA-AS lines had lower levels of Pin and PPO RNAs than wild-type controls. Furthermore, larvae consumed more foliage and attained larger masses when feeding on LapA-SI plants. Jasmonic acid (JA) did not complement the wound-signaling phenotype of LapA-SI plants. Based on root elongation in the presence of JA, JA perception appeared to be intact in LapA-SI lines. Collectively, these data suggested that LAP-A has a role in modulating essential defenses against herbivores by promoting late wound responses and acting downstream of JA biosynthesis and perception

    Up-regulation of leucine aminopeptidase-A in cadmium-treated tomato roots

    No full text
    The effects of cadmium (Cd) on aminopeptidase (AP) activities and Leucine-AP (LAP) expression were investigated in the roots of tomato (Solanum lycopersicum L., var Ibiza) plants. Three-week-old plants were grown for 10 days in the presence of 0.3-300 μM Cd and compared to control plants grown in the absence of Cd. AP activities were measured using six different p-nitroanilide (p-NA) substrates. Leu, Met, Arg, Pro and Lys hydrolyzing activities increased in roots of Cd-treated plants, while Phe-pNA cleavage was not enhanced after Cd treatments. The use of peptidase inhibitors showed that most of the Leu-pNA hydrolyzing activity was related to one or several metallo-APs. Changes in Lap transcripts, protein and activities were measured in the roots of 0 and 30-μM Cd-treated plants. LapA transcript levels increased in Cd-treated roots, whereas LapN RNAs levels were not modified. To assess amount of Leu-pNA hydrolyzing activity associated with the hexameric LAPs, LAP activity was measured following immunoprecipitation with a LAP polyclonal antiserum. LAP activity increased in Cd-treated roots. There was a corresponding increase in LAP-A protein levels detected in 2D-immunoblots. The role of LAP-A in the proteolytic response to Cd stress is discussed

    Functional impairment of systemic scleroderma patients with digital ulcerations: results from the DUO Registry

    Get PDF
    Objective. Digital ulcers (DUs) are frequent manifestations of systemic scleroderma (SSc). This study assessed functional limitations due to DUs among patients enrolled in the Digital Ulcer Outcome (DUO) Registry, an international, multicentre, observational registry of SSc patients with DU disease. Methods. Patients completed at enrolment a DU-specific functional assessment questionnaire with a 1-month recall period, measuring impairment in work and daily activities, and hours of help needed from others. Physician-reported clinical parameters were used to describe the population. For patients who completed at least part of the questionnaire, descriptive analyses were performed for overall results, and stratified by number of DUs at enrolment. Results. This study included 2327 patients who completed at least part of the questionnaire. For patients with 0, 1-2, and DUs at enrolment, mean overall work impairment during the prior month among employed/self-employed patients was 28\%, 42\%, and 48\%, respectively. Across all included patients, ability to perform daily activities was impaired on average by 35\%, 54\%, and 63\%, respectively. Patients required a mean of 2.0, 8.7, and 8.8 hours of paid help and 17.0, 35.9, and 63.7 hours of unpaid help, respectively, due to DUs in the prior month. Patients with DUs had more complications and medication use than patients with no DUs. Conclusion. With increasing number of DUs, SSc patients reported more impairment in work and daily activities and required more support from others

    Decision Making, Institutions, Elite Control, and Responsiveness in Public Administration History

    No full text
    corecore