28 research outputs found

    Determining the role of oxygen vacancies in the photoelectrocatalytic performance of WO3 for water oxidation

    Get PDF
    Oxygen vacancies are common to most metal oxides, whether intentionally incorporated or otherwise, and the study of these defects is of increasing interest for solar water splitting. In this work, we examine nanostructured WO3 photoanodes of varying oxygen content to determine how the concentration of bulk oxygen-vacancy states affects the photocatalytic performance for water oxidation. Using transient optical spectroscopy, we follow the charge carrier recombination kinetics in these samples, from picoseconds to seconds, and examine how differing oxygen vacancy concentrations impact upon these kinetics. We find that samples with an intermediate concentration of vacancies (∌2% of oxygen atoms) afford the greatest photoinduced charge carrier densities, and the slowest recombination kinetics across all timescales studied. This increased yield of photogenerated charges correlates with improved photocurrent densities under simulated sunlight, with both greater and lesser oxygen vacancy concentrations resulting in enhanced recombination losses and poorer J–V performances. Our conclusion, that an optimal – neither too high nor too low – concentration of oxygen vacancies is required for optimum photoelectrochemical performance, is discussed in terms of the competing beneficial and detrimental impact these defects have on charge separation and transport, as well as the implications held for other highly doped materials for photoelectrochemical water oxidation

    Kinetics of photoelectrochemical oxidation of methanol on hematite photoanodes

    Get PDF
    The kinetics of photoelectrochemical (PEC) oxidation of methanol, as a model organic substrate, on α-Fe2O3 photoanodes are studied using photoinduced absorption spectroscopy and transient photocurrent measurements. Methanol is oxidized on α-Fe2O3 to formaldehyde with near unity Faradaic efficiency. A rate law analysis under quasi-steady-state conditions of PEC methanol oxidation indicates that rate of reaction is second order in the density of surface holes on hematite and independent of the applied potential. Analogous data on anatase TiO2 photoanodes indicate similar second-order kinetics for methanol oxidation with a second-order rate constant 2 orders of magnitude higher than that on α-Fe2O3. Kinetic isotope effect studies determine that the rate constant for methanol oxidation on α-Fe2O3 is retarded ∌20-fold by H/D substitution. Employing these data, we propose a mechanism for methanol oxidation under 1 sun irradiation on these metal oxide surfaces and discuss the implications for the efficient PEC methanol oxidation to formaldehyde and concomitant hydrogen evolution

    Hierarchical Neural Network Architecture In Keyword Spotting

    Get PDF
    Keyword Spotting (KWS) provides the start signal of ASR problem, and thus it is essential to ensure a high recall rate. However, its real-time property requires low computation complexity. This contradiction inspires people to find a suitable model which is small enough to perform well in multi environments. To deal with this contradiction, we implement the Hierarchical Neural Network(HNN), which is proved to be effective in many speech recognition problems. HNN outperforms traditional DNN and CNN even though its model size and computation complexity are slightly less. Also, its simple topology structure makes easy to deploy on any device.Comment: To be submitted in part to IEEE ICASSP 201

    WO3/BiVO4: impact of charge separation at the timescale of water oxidation

    Get PDF
    The four hole oxidation of water has long been considered the kinetic bottleneck for overall solar-driven water splitting, and thus requires the formation of long-lived photogenerated holes to overcome this kinetic barrier. However, photogenerated charges are prone to recombination unless they can be spatially separated. This can be achieved by coupling materials with staggered conduction and valence band positions, providing a thermodynamic driving force for charge separation. This has most aptly been demonstrated in the WO3/BiVO4 junction, in which quantum efficiencies for the water oxidation reaction can approach near unity. However, the charge carrier dynamics in this system remain elusive over timescales relevant to water oxidation (ÎŒs–s). In this work, the effect of charge separation on carrier lifetime, and the voltage dependence of this process, is probed using transient absorption spectroscopy and transient photocurrent measurements, revealing sub-ÎŒs electron transfer from BiVO4 to WO3. The interface formed between BiVO4 and WO3 is shown to overcome the “dead-layer effect” encountered in BiVO4 alone. Moreover, our study sheds light on the role of the WO3/BiVO4 junction in enhancing the efficiency of the water oxidation reaction, where charge separation across the WO3/BiVO4 junction improves both the yield and lifetime of holes present in the BiVO4 layer over timescales relevant to water oxidation

    WO3/BiVO4: impact of charge separation at the timescale of water oxidation

    Get PDF
    The four hole oxidation of water has long been considered the kinetic bottleneck for overall solar-driven water splitting, and thus requires the formation of long-lived photogenerated holes to overcome this kinetic barrier. However, photogenerated charges are prone to recombination unless they can be spatially separated. This can be achieved by coupling materials with staggered conduction and valence band positions, providing a thermodynamic driving force for charge separation. This has most aptly been demonstrated in the WO3/BiVO4 junction, in which quantum efficiencies for the water oxidation reaction can approach near unity. However, the charge carrier dynamics in this system remain elusive over timescales relevant to water oxidation (ÎŒs–s). In this work, the effect of charge separation on carrier lifetime, and the voltage dependence of this process, is probed using transient absorption spectroscopy and transient photocurrent measurements, revealing sub-ÎŒs electron transfer from BiVO4 to WO3. The interface formed between BiVO4 and WO3 is shown to overcome the “dead-layer effect” encountered in BiVO4 alone. Moreover, our study sheds light on the role of the WO3/BiVO4 junction in enhancing the efficiency of the water oxidation reaction, where charge separation across the WO3/BiVO4 junction improves both the yield and lifetime of holes present in the BiVO4 layer over timescales relevant to water oxidation

    Gradient tantalum-doped hematite homojunction photoanode improves both photocurrents and turn-on voltage for solar water splitting

    Get PDF
    Hematite has a great potential as a photoanode for photoelectrochemical (PEC) water splitting by converting solar energy into hydrogen fuels, but the solar-to-hydrogen conversion efficiency of state-of-the-art hematite photoelectrodes are still far below the values required for practical hydrogen production. Here, we report a core-shell formation of gradient tantalum-doped hematite homojunction nanorods by combination of hydrothermal regrowth strategy and hybrid microwave annealing, which enhances the photocurrent density and reduces the turn-on voltage simultaneously. The unusual bi-functional effects originate from the passivation of the surface states and intrinsic built-in electric field by the homojunction formation. The additional driving force provided by the field can effectively suppress charge???carrier recombination both in the bulk and on the surface of hematite, especially at lower potentials. Moreover, the synthesized homojunction shows a remarkable synergy with NiFe(OH)x cocatalyst with significant additional improvements of photocurrent density and cathodic shift of turn-on voltage. The work has nicely demonstrated multiple collaborative strategies of gradient doping, homojunction formation, and cocatalyst modification, and the concept could shed light on designing and constructing the efficient nanostructures of semiconductor photoelectrodes in the field of solar energy conversion. ?? 2020, The Author(s)

    Spectroelectrochemical study of water oxidation on nickel and iron oxyhydroxide electrocatalysts

    Get PDF
    Ni/Fe oxyhydroxides are the best performing Earth-abundant electrocatalysts for water oxidation. However, the origin of their remarkable performance is not well understood. Herein, we employ spectroelectrochemical techniques to analyse the kinetics of water oxidation on a series of Ni/Fe oxyhydroxide films: FeOOH, FeOOHNiOOH, and Ni(Fe)OOH (5% Fe). The concentrations and reaction rates of the oxidised states accumulated during catalysis are determined. Ni(Fe)OOH is found to exhibit the fastest reaction kinetics but accumulates fewer states, resulting in a similar performance to FeOOHNiOOH. The later catalytic onset in FeOOH is attributed to an anodic shift in the accumulation of oxidised states. Rate law analyses reveal that the rate limiting step for each catalyst involves the accumulation of four oxidised states, Ni-centred for Ni(Fe)OOH but Fe-centred for FeOOH and FeOOHNiOOH. We conclude by highlighting the importance of equilibria between these accumulated species and reactive intermediates in determining the activity of these materials

    Water oxidation and electron extraction kinetics in nanostructured tungsten trioxide photoanodes

    No full text
    A thorough understanding of the kinetic competition between desired water oxidation/electron extraction processes and any detrimental surface recombination is required to achieve high water oxidation efficiencies in transition-metal oxide systems. The kinetics of these processes in high Faradaic efficiency tungsten trioxide (WO3) photoanodes (>85%) are monitored herein by transient diffuse reflectance spectroscopy and correlated with transient photocurrent data for electron extraction. Under anodic bias, efficient hole transfer to the aqueous electrolyte is observed within a millisecond. In contrast, electron extraction is found to be comparatively slow (∌10 ms), increasing in duration with nanoneedle length. The relative rates of these water oxidation and electron extraction kinetics are shown to be reversed in comparison to other commonly examined metal oxides (e.g., TiO2, α-Fe2O3, and BiVO4). Studies conducted as a function of applied bias and film processing to modulate oxygen vacancy density indicate that slow electron extraction kinetics result from electron trapping in shallow WO3 trap states associated with oxygen vacancies. Despite these slow electron extraction kinetics, charge recombination losses on the microsecond to second time scales are observed to be modest compared to other oxides studied. We propose that the relative absence of such recombination losses, and the observation of a photocurrent onset potential close to flat-band, result directly from the faster water oxidation kinetics of WO3. We attribute these fast water oxidation kinetics to the highly oxidizing valence band position of WO3, thus highlighting the potential importance of thermodynamic driving force for catalysis in outcompeting detrimental surface recombination processes

    Efficient light-driven water oxidation catalysis by dinuclear Ru complexes

    No full text
    Mastering the light-induced four-electron oxidation of water to molecular oxygen is a key step towards the achievement of overall water splitting to produce alternative solar fuels. In this work, we report two rugged molecular pyrazolate-based diruthenium complexes that efficiently catalyze visible-light-driven water oxidation. These complexes were fully characterized both in the solid state (by X-ray diffraction analysis) and in solution (spectroscopically and electrochemically). Benchmark performances for homogeneous oxygen production have been obtained for both catalysts in the presence of a photosensitizer and a sacrificial electron acceptor at pH 7, and a turnover frequency of up to 11.1 s&minus;1 and a turnover number of 5300 were obtained after three successive catalytic runs. Under the same experimental conditions with the same setup, the pyrazolate-based diruthenium complexes outperform other well-known water oxidation catalysts owing to both electrochemical and mechanistic aspects.</p
    corecore