20 research outputs found

    R.E.D. Server: a web service for deriving RESP and ESP charges and building force field libraries for new molecules and molecular fragments

    Get PDF
    R.E.D. Server is a unique, open web service, designed to derive non-polarizable RESP and ESP charges and to build force field libraries for new molecules/molecular fragments. It provides to computational biologists the means to derive rigorously molecular electrostatic potential-based charges embedded in force field libraries that are ready to be used in force field development, charge validation and molecular dynamics simulations. R.E.D. Server interfaces quantum mechanics programs, the RESP program and the latest version of the R.E.D. tools. A two step approach has been developed. The first one consists of preparing P2N file(s) to rigorously define key elements such as atom names, topology and chemical equivalencing needed when building a force field library. Then, P2N files are used to derive RESP or ESP charges embedded in force field libraries in the Tripos mol2 format. In complex cases an entire set of force field libraries or force field topology database is generated. Other features developed in R.E.D. Server include help services, a demonstration, tutorials, frequently asked questions, Jmol-based tools useful to construct PDB input files and parse R.E.D. Server outputs as well as a graphical queuing system allowing any user to check the status of R.E.D. Server jobs

    DNA oligonucleotides with A, T, G or C opposite an abasic site: structure and dynamics

    Get PDF
    Abasic sites are common DNA lesions resulting from spontaneous depurination and excision of damaged nucleobases by DNA repair enzymes. However, the influence of the local sequence context on the structure of the abasic site and ultimately, its recognition and repair, remains elusive. In the present study, duplex DNAs with three different bases (G, C or T) opposite an abasic site have been synthesized in the same sequence context (5′-CCA AAG[subscript 6] XA[subscript 8]C CGG G-3′, where X denotes the abasic site) and characterized by 2D NMR spectroscopy. Studies on a duplex DNA with an A opposite the abasic site in the same sequence has recently been reported [Chen,J., Dupradeau,F.-Y., Case,D.A., Turner,C.J. and Stubbe,J. (2007) Nuclear magnetic resonance structural studies and molecular modeling of duplex DNA containing normal and 4′-oxidized abasic sites. Biochemistry, 46, 3096–3107]. Molecular modeling based on NMR-derived distance and dihedral angle restraints and molecular dynamics calculations have been applied to determine structural models and conformational flexibility of each duplex. The results indicate that all four duplexes adopt an overall B-form conformation with each unpaired base stacked between adjacent bases intrahelically. The conformation around the abasic site is more perturbed when the base opposite to the lesion is a pyrimidine (C or T) than a purine (G or A). In both the former cases, the neighboring base pairs (G6-C21 and A8-T19) are closer to each other than those in B-form DNA. Molecular dynamics simulations reveal that transient H-bond interactions between the unpaired pyrimidine (C20 or T20) and the base 3′ to the abasic site play an important role in perturbing the local conformation. These results provide structural insight into the dynamics of abasic sites that are intrinsically modulated by the bases opposite the abasic site.National Institutes of Health (U.S.) (Grant GM 34454)National Institutes of Health (U.S.) (Grant GM 45811)National Institutes of Health (U.S.) (Grant RR-00995)France. Recherche, Ministère de laFrance. Ministère de l'éducation national

    Molecular Dynamics Simulations of a Characteristic DPC Micelle in Water

    No full text
    International audienc

    Interaction of Chondroitin and Hyaluronan Glycosaminoglycans with Surfaces of Carboxylated Carbon Nanotubes Studied Using Molecular Dynamics Simulations

    No full text
    Interaction of β-D-glucopyranuronic acid (GlcA), N-acetyl-β-D-glucosamine (GlcNAc), N-acetyl-β-D-galactosamine (GalNAc) and two natural decameric glycosaminoglycans, hyaluronic acid (HA) and Chondroitin (Ch) with carboxylated carbon nanotubes, were studied using molecular dynamics simulations in a condensed phase. The force field used for carbohydrates was the GLYCAM-06j version, while functionalized carbon nanotubes (fCNT) were described using version two of the general amber force field. We found a series of significant differences in carbohydrate-fCNT adsorption strength depending on the monosaccharide molecule and protonation state of surface carboxyl groups. GlcNAc and GalNAc reveal a strong adsorption on fCNT with deprotonated carboxyl groups, and a slightly weaker adsorption on the fCNT with protonated carboxyl groups. On the contrary, GlcA weakly adsorbs on fCNT. The change in protonation state of surface carboxyl groups leads to the reversal orientation of GlcNAc and GalNAc in reference to the fCNT surface, while GlcA is not sensitive to that factor. Adsorption of decameric oligomers on the surface of fCNT weakens with the increasing number of monosaccharide units. Chondroitin adsorbs weaker than hyaluronic acid and incorporation of four Ch molecules leads to partial detachment of them from the fCNT surface. The glycan–fCNT interactions are strong enough to alter the conformation of carbohydrate backbone; the corresponding conformational changes act toward a more intensive contact of glycan with the fCNT surface. Structural and energetic features of the adsorption process suggest the CH-π interaction-driven mechanism

    Bindings of hMRP1 transmembrane peptides with dodecylphosphocholine and dodecyl-β-d-maltoside micelles: A molecular dynamics simulation study

    Get PDF
    International audienceIn this paper, we describe molecular dynamics simulation results of the interactions between four peptides (mTM10, mTM16, TM17 and KTM17) with micelles of dodecylphosphocholine (DPC) and dodecyl-β-Dmaltoside (DDM). These peptides represent three transmembrane fragments (TM10, 16 and 17) from the MSD1 and MSD2 membrane-spanning domains of an ABC membrane protein (hMRP1), which play roles in the protein functions. The peptide–micelle complex structures, including the tryptophan accessibility and dynamics were compared to circular dichroism and fluorescence studies obtained in water, trifluoroethanol and with micelles. Our work provides additional results not directly accessible by experiments that give further support to the fact that these peptides adopt an interfacial conformation within the micelles. We also show that the peptides are more buried in DDM than in DPC, and consequently, that they have a larger surface exposure to water in DPC than in DDM. As noted previously by simulations and experiments we have also observed formation of cation–π bonds between the phosphocholine DPC headgroup and Trp peptide residue. Concerning the peptide secondary structures (SS), we find that in TFE their initial helical conformations are maintained during the simulation, whereas in water their initial SS are lost after few nanoseconds of simulation. An intermediatesituation is observed with micelles, where the peptides remain partially folded and more structured in DDMthan in DPC. Finally, our results show no sign of β-strand structure formation as invoked by far-UV CDexperiments even when three identical peptides are simulated either in water or with micelle
    corecore