47 research outputs found
Annotation of Tribolium nuclear receptors reveals an evolutionary overacceleration of a network controlling the ecdysone cascade
The Tribolium genome contains 21 nuclear receptors, representing all of the
six known subfamilies. When compared to other species, this first complete set
for a Coleoptera reveals a strong conservation of the number and identity of
nuclear receptors in holometabolous insects. Two novelties are observed: the
atypical NR0 gene knirps is present only in brachyceran flies, while the NR2E6
gene is found only in Tribolium and in Apis. Using a quantitative analysis of
the evolutionary rate, we discovered that nuclear receptors could be divided
into two groups. In one group of 13 proteins, the rates follow the trend of the
Mecopterida genome-wide acceleration. In a second group of five nuclear
receptors, all acting together at the top of the ecdysone cascade, we observed
an overacceleration of the evolutionary rate during the early divergence of
Mecopterida. We thus extended our analysis to the twelve classic ecdysone
transcriptional regulators and found that six of them (ECR, USP, HR3, E75, HR4
and Kr-h1) underwent an overacceleration at the base of the Mecopterida
lineage. By contrast, E74, E93, BR, HR39, FTZ-F1 and E78 do not show this
divergence. We suggest that coevolution occurred within a network of regulators
that control the ecdysone cascade. The advent of Tribolium as a powerful model
should allow a better understanding of this evolution
Hydrodynamique du plateau continental aquitain et influence sur les Ă©pisodes Ă Dinophysis dans le Bassin d'Arcachon
Des épisodes à Dinophysis affectent périodiquement l'exploitation des fruits de mer dans le Bassin d'Arcachon. Le réseau de surveillance interne au Bassin d'Arcachon montre que Dinophysis est advecté de l'océan ouvert. Le but de cette étude est de déterminer l'origine de Dinophysis. Des campagnes en mer sur le plateau continental Aquitain ont permis d'identifier une zone propice au développement de Dinophysis au large de Capbreton. Les épisodes à Dinophysis dans le bassin d'Arcachon se produisent suite à des vents d'Ouest qui induisent des courants vers le Sud d'aprÚs la littérature. L'étude des données hydrodynamiques acquises pendant les campagnes met en évidence un processus complexe et nouveau suite aux vents d'Ouest: de forts courants le long de la cÎte vers le Nord capables de transporter Dinophysis de Capbreton jusqu'au Bassin d'Arcachon. Un travail de modélisation a permis de reproduire ce courant et d'étudier son mécanisme particulier lié coin Sud-Est du Golfe de Gascogne.AbstractBORDEAUX1-Bib.electronique (335229901) / SudocSudocFranceF
The genome of the water strider Gerris buenoi reveals expansions of gene repertoires associated with adaptations to life on the water.
BACKGROUND: Having conquered water surfaces worldwide, the semi-aquatic bugs occupy ponds, streams, lakes, mangroves, and even open oceans. The diversity of this group has inspired a range of scientific studies from ecology and evolution to developmental genetics and hydrodynamics of fluid locomotion. However, the lack of a representative water strider genome hinders our ability to more thoroughly investigate the molecular mechanisms underlying the processes of adaptation and diversification within this group. RESULTS: Here we report the sequencing and manual annotation of the Gerris buenoi (G. buenoi) genome; the first water strider genome to be sequenced thus far. The size of the G. buenoi genome is approximately 1,000Â Mb, and this sequencing effort has recovered 20,949 predicted protein-coding genes. Manual annotation uncovered a number of local (tandem and proximal) gene duplications and expansions of gene families known for their importance in a variety of processes associated with morphological and physiological adaptations to a water surface lifestyle. These expansions may affect key processes associated with growth, vision, desiccation resistance, detoxification, olfaction and epigenetic regulation. Strikingly, the G. buenoi genome contains three insulin receptors, suggesting key changes in the rewiring and function of the insulin pathway. Other genomic changes affecting with opsin genes may be associated with wavelength sensitivity shifts in opsins, which is likely to be key in facilitating specific adaptations in vision for diverse water habitats. CONCLUSIONS: Our findings suggest that local gene duplications might have played an important role during the evolution of water striders. Along with these findings, the sequencing of the G. buenoi genome now provides us the opportunity to pursue exciting research opportunities to further understand the genomic underpinnings of traits associated with the extreme body plan and life history of water striders
Ătude dĂ©veloppementale et fonctionnelle des mĂ©tallothionĂ©ines chez la drosophile
The metallothionein system in Drosophila melanogaster is composed of two genes, Mtn and Mto. In order to compare the induction properties of these genes, we transformed D. melanogaster with P-element vectors containing Adh and lacZ reporter genes under the control of Mtn and Mto promoters, respectively. Mtn and Mto transgenes are mainly expressed in digestive tract. However, Mtn expression has been detected also in the fat body. Mtn and Mto transgenes respond differently to metallic, heat-shock and oxidative stresses.These data confirm that both genes are in part functionally different.Expression of the two Drosophila melanogaster metallothionein genes, Mtn and Mto, has been analyzed by in situ hybridization during post-embryonic development. Mtn and Mto transcripts were detected exclusively in the digestive tract of larvae, pupae and adults reared on standard medium. Mtn and Mto expression domains overlap, but each gene is also expressed at unique sites. Mtn mRNA levels are approximately 10 and 20 times higher than those of Mto in larvae and adults, respectively. Copper and cadmium ions strongly induce Mtn and Mto mRNA accumulation in the midgut. Zinc is a weaker inducer, acting only at high concentrations. Mtn gene expression is induced by these three metals in Malpighian tubules, while Mto gene expression in this organ is induced only by zinc. Iron is a poor inducer of metallothionein mRNA accumulation. Functions of MTN and MTO proteins in metal homeostasis and detoxification are considered.Developmental expression of the Drosophila melanogaster metallothionein Mtn gene has been analysed. Transcripts of this gene accumulate during the vitellogenic phase of oogenesis in a ring of follicular cells at the oocyte-nurse cell margin and in the follicular cells surrounding the oocyte. There is also strong expression of the Mtn gene during the second half of embryogenesis in hemocytes, the endoderm midgut, and Malpighian tubules. A banded expression pattern is observed transiently in the midgut at stage 13. The two Mtn alleles, Mtn and Mtn, show quantitative differences in their expression patterns. Copper intoxication of flies does not induce ectopic expression of the Mtn gene, but rather leads to over-expression of the gene in the structures where it is normally transcribed. Mtn transcription is not altered in homozygous mutants of four genes (lab, wg, dpp, bap) known to be involved in midgut morphogenesis. Expression of Mtn has been also studied in six other species of the melanogaster subgroup. This analysis demonstrates that regulation of Mtn gene transcription has changed during evolution of the Drosophila lineage. For example, Mtn is expressed specifically in the Malpighian tubules of D. melanogaster, while in D. mauritiana and D. sechellia the amnioserosa is a specific location of expression. Nonetheless, expression of Mtn in the midgut is common to the seven species, suggesting a basic role for the MTN protein during embryogenesis in this organ, possibly in the release of metallic ions from vitellogenins. In contrast, two genes also expressed in the embryonic midgut, lab and dFRA, display identical patterns in all species of the melanogaster subgroup. The diversity of Mtn patterns in closely related Drosophila species exemplifies the rapid evolution of a gene regulatory system.Les mĂ©tallothionĂ©ines sont de petites protĂ©ines riches en cystĂ©ine et en mĂ©taux prĂ©sentes chez les procaryotes et les eucaryotes. La fonction de ces protĂ©ines dans la dĂ©toxication mĂ©tallique est clairement Ă©tablie, mais leur implication dans le mĂ©tabolisme normal du zinc, du cuivre et des radicaux libres est peu documentĂ©. In vitro, les mĂ©tallothionĂ©ines peuvent rĂ©guler des mĂ©talloprotĂ©ines telles que les facteurs de transcription Ă doigts de zinc par un Ă©change rĂ©versible des ions mĂ©talliques. Elles sont aussi capables de se substituer fonctionnellement Ă la superoxyde dismutase dans la levure pour la protection contre les radicaux libres.Le systĂšme mĂ©tallothionĂ©ine de la drosophile constitue un bon modĂšle pour lâĂ©tude des mĂ©tallothionĂ©ines dâun mĂ©tazoaire car il est Ă la fois simple et diffĂ©renciĂ©. En effet, contrairement Ă ce qu'on observe chez les vertĂ©brĂ©s et les Ă©chinodermes, le gĂ©nome de cette espĂšce ne contient que deux gĂšnes mĂ©tallothionĂ©ine, Mtn et Mto, qui codent pour des protĂ©ines trĂšs diffĂ©rentes (26% dâidentitĂ©).Une analyse de lâexpression des deux gĂšnes mĂ©tallothionĂ©ine a Ă©tĂ© rĂ©alisĂ©e par hybridation in situ Ă tous les stades du dĂ©veloppement de la drosophile. Les transcrits de Mto ne sont pas dĂ©tectables avant les stades post-embryonnaires (larves, pupes, adultes) oĂč ils sont localisĂ©s dans le mĂ©sentĂ©ron et inductibles par les mĂ©taux. Pendant tout le dĂ©veloppement, les transcrits de Mtn sont prĂ©sents dans le mĂ©sentĂ©ron et les tubes de Malpighi et inductibles par les mĂ©taux. Mtn est aussi exprimĂ© dans certains hĂ©mocytes de lâembryon et dans les cellules folliculaires de lâovaire. Nous avons dĂ©montrĂ© que lâexpression de l'allĂšle Mtn.3 est plus faible que celle de l'allĂšle Mtn1 dans le mĂ©sentĂ©ron des embryons. Une surprenante variabilitĂ© inter-spĂ©cifique a Ă©tĂ© observĂ©e dans le sous-groupe melanogaster oĂč des espĂšces trĂšs proches prĂ©sentent diffĂ©rents profils dâexpression de Mtn.Nous avons transformĂ© Drosophila melanogaster avec des Ă©lĂ©ments P contenant des gĂšnes rapporteurs (lacZ ou Adh) sous contrĂŽle de diffĂ©rentes portions des promoteurs de Mtn ou de Mto. Dans des conditions normales, ces transgĂšnes s'expriment dans deux rĂ©gions bien dĂ©finies du mĂ©sentĂ©ron et, pour Mtn seulement, dans les tubes de Malpighi des larves. La spĂ©cificitĂ© tissulaire de lâinduction mĂ©tallique dĂ©pend du mĂ©tal utilisĂ©. Lâinduction des transgĂšnes par un choc thermique dans le tube digestif indique que la localisation des mĂ©tallothionĂ©ines nâest pas seulement due Ă lâabsorption intestinale des ions mĂ©talliques. La possibilitĂ© dâinduire les transgĂšnes par un stress oxydatif suggĂšre aussi que les mĂ©tallothionĂ©ines pourraient jouer un rĂŽle dans la protection contre les radicaux libres chez la drosophile. Dans des conditions naturelles, le gĂšne Mto nâest jamais dupliquĂ©. Au contraire, les duplications de l'allĂšle Mtn1 sont frĂ©quentes et toujours associĂ©es Ă une meilleure rĂ©sistance Ă lâintoxication mĂ©tallique. Des lignĂ©es transgĂ©niques contenant le gĂšne Mto entier montrent une meilleure rĂ©sistance Ă lâintoxication par le cadmium. Ainsi Mto, comme Mtn, peut agir en tant que gĂšne de dĂ©toxication.Nos rĂ©sultats suggĂšrent fortement que les gĂšnes Mtn et Mto sont impliquĂ©s dans l'absorption et lâexcrĂ©tion des mĂ©taux Ă tous les stades du dĂ©veloppement de D. melanogaster. Ce travail montre aussi que lâĂ©tude des variations du systĂšme de rĂ©gulation de Mtn dans le sous-groupe melanogaster est susceptible dâapporter des informations sur la façon dont apparaissent de nouveaux profils dâexpression, et peut-ĂȘtre de nouvelles fonctions, au cours de lâĂ©volution
Divergence Ă©volutive extrĂȘme dâun gĂšne homĂ©otique: le cas bicoid
La gĂ©nĂ©tique Ă©volutive du dĂ©veloppement rĂ©vĂšle une grande plasticitĂ© des mĂ©canismes dĂ©veloppementaux. Lâexemple de bicoid, le premier morphogĂšne connu, illustre comment un gĂšne essentiel peut changer de fonction au cours de lâĂ©volution. La recherche dâhomologues de bicoid a montrĂ© que ce gĂšne Ă©tait spĂ©cifique des mouches et absent chez les autres insectes. En fait, il sâavĂšre que bicoid est un gĂšne homĂ©otique Hox3 trĂšs dĂ©rivĂ© (câest-Ă -dire trĂšs Ă©loignĂ© de son gĂšne ancestral). Au cours de lâĂ©volution des insectes, le gĂšne Hox3 ancestral a perdu sa fonction homĂ©otique pour acquĂ©rir un nouveau rĂŽle maternel et dans les annexes embryonnaires. Dans la lignĂ©e menant aux mouches, une duplication de ce nouveau gĂšne a ensuite eu lieu, suivie dâune divergence aboutissant Ă la crĂ©ation des gĂšnes bicoid et zerknĂŒllt. Lâanalyse de lâĂ©volution de bicoid, comme celle de nombreux autres gĂšnes du dĂ©veloppement, montre la nĂ©cessitĂ© dâĂ©largir le choix des espĂšces modĂšles pour Ă©viter les gĂ©nĂ©ralisations hĂątives faites Ă partir dâun modĂšle particulier.Evolutionary developmental genetics (evo-devo) reveals that the plasticity of development is so important that every developmental biology project should carefully take this point into consideration. The example of bicoid, the first discovered morphogen, illustrates how an essential gene can change its function during evolution. The search for bicoid homologues showed that this gene is surprisingly specific to flies (cyclorraphan diptera) and absent in other insects. In fact, recent studies demonstrate that bicoid is a very derived Hox3 homeotic gene. During insect evolution, the ancestral Hox3 gene lost its homeotic function and acquired new roles in oocytes and embryonic annexes. Then, in the lineage leading to modern flies, a duplication of this new gene, followed by functional divergence, led to the formation of bicoid and zerknĂŒllt. Both genes are located within the DrosophilaHox complex; however, they have no homeotic function. Thanks to the power of Drosophila genetics, it is possible to suggest that torso and hunchback may constitute the insect primitive anterior organizer. The bicoid evolutionary history reveals several fundamental mechanisms of the evolution of developmental genes, such as changes of gene regulation, modifications of protein sequences and gene duplication. It also shows the need for studying a wider range of model organisms before generalisations can be made from data obtained with one particular species
Quand Tribolium compleÌmente la geÌneÌtique de la drosophile
International audienceWith its recently sequenced genome, the red flour beetle Tribolium castaneum became one of the few model organisms with all the main genetic tools. As a coleoptera, it belongs to the most species-rich order of animals. Tribolium is also a worldwide pest for stored dried foods. Regarding developmental biology, Tribolium offers a complementary model to the highly derived Drosophila. For example, the function of many gap and pair-rule segmentation genes is different in both species. These differences reveal the evolutionary plasticity between two modes of development, with a long germ band in fly and a short one in Tribolium. This beetle allowed the identification of a new type of ecdysone receptor for holometabolous insects. Finally, in the search for the juvenile hormone receptor, a crucial result was obtained with experiments that could be performed only with Tribolium, and not with Drosophila. Tribolium, in association with Drosophila, should help to understand the general rules of development in insects.Le geÌnome de Tribolium castaneum, publieÌ reÌcemment, ne serait-il quâune goutte de plus verseÌe dans lâoceÌan geÌnomique? Non, car Tribolium se distingue aÌ plus dâun titre. Dâabord, en tant que coleÌopteÌre, il repreÌsente un ordre qui compte environ le quart des espeÌces animales. De plus, cet insecte omnivore est un nuisible pour les grains et les farines du monde entier. Enfin, Tribolium est discreÌtement entreÌ dans lâeÌlite des organismes modeÌles de la geÌneÌtique. Cet article vise aÌ montrer que Tribolium est un compagnon de laboratoire compleÌmentaire de la drosophile, notamment pour la geÌneÌtique du deÌveloppement
Comment les ailes sont venues aux insectes
International audienceAussi Ă©tonnant que cela puisse paraĂźtre, les ailes des insectes se seraient dĂ©veloppĂ©es Ă partir des⊠branchies d'un invertĂ©brĂ© aquatique, il y a environ 400 millions d'annĂ©es. Ce rĂ©sultat illustre l'apport de l'« Ă©vo-dĂ©vo », une nouvelle discipline qui mĂȘle Ă©volution, gĂ©nĂ©tique et embryologie
Evolution of nuclear hormone receptors in insects
Volume 3 : Endocrinology Chap. 3.6International audienc