8,783 research outputs found

    Differentially 4-uniform functions

    Full text link
    We give a geometric characterization of vectorial boolean functions with differential uniformity less or equal to 4

    Formal study of plane Delaunay triangulation

    Get PDF
    This article presents the formal proof of correctness for a plane Delaunay triangulation algorithm. It consists in repeating a sequence of edge flippings from an initial triangulation until the Delaunay property is achieved. To describe triangulations, we rely on a combinatorial hypermap specification framework we have been developing for years. We embed hypermaps in the plane by attaching coordinates to elements in a consistent way. We then describe what are legal and illegal Delaunay edges and a flipping operation which we show preserves hypermap, triangulation, and embedding invariants. To prove the termination of the algorithm, we use a generic approach expressing that any non-cyclic relation is well-founded when working on a finite set

    Generalized two-body self-consistent theory of random linear dielectric composites: an effective-medium approach to clustering in highly-disordered media

    Full text link
    Effects of two-body dipolar interactions on the effective permittivity/conductivity of a binary, symmetric, random dielectric composite are investigated in a self-consistent framework. By arbitrarily splitting the singularity of the Green tensor of the electric field, we introduce an additional degree of freedom into the problem, in the form of an unknown "inner" depolarization constant. Two coupled self-consistent equations determine the latter and the permittivity in terms of the dielectric contrast and the volume fractions. One of them generalizes the usual Coherent Potential condition to many-body interactions between single-phase clusters of polarizable matter elements, while the other one determines the effective medium in which clusters are embedded. The latter is in general different from the overall permittivity. The proposed approach allows for many-body corrections to the Bruggeman-Landauer (BL) scheme to be handled in a multiple-scattering framework. Four parameters are used to adjust the degree of self-consistency and to characterize clusters in a schematic geometrical way. Given these parameters, the resulting theory is "exact" to second order in the volume fractions. For suitable parameter values, reasonable to excellent agreement is found between theory and simulations of random-resistor networks and pixelwise-disordered arrays in two and tree dimensions, over the whole range of volume fractions. Comparisons with simulation data are made using an "effective" scalar depolarization constant that constitutes a very sensitive indicator of deviations from the BL theory.Comment: 14 pages, 7 figure

    Clutter rejection for MTI radar using a single antenna and a long integration time

    Get PDF
    Moving Target Indicators (MTI) are airborne radar systems designed to detect and track moving vehicles or aircrafts. In this paper, we address the problem of detecting hazardous collision targets to avoid them. One of the best known solutions to solve this problem is given by the so-called Space-Time Adaptive Processing (STAP) algorithms which optimally filter the target signal from interference and noise exploiting the specific relationship between Direction Of Arrival (DOA) and Doppler for the ground clutter. However, these algorithms require an antenna array and multiple reception channels that increase cost and complexity. The authors propose an alternative solution using a single antenna only. In addition to the standard Doppler shift related to the radial speed, the orthoradial speed of any target can be estimated if using a long integration time. Dangerous targets and ground clutter have different signatures in the radial-orthoradial velocity plane. An optimal detector is then proposed based on the oblique projection onto the signal subspace orthogonal to the clutter subspace. The theoretical performances of this detector are derived and a realistic radar scene simulation shows the benefits of this new MTI detector

    Fourier-based schemes with modified Green operator for computing the electrical response of heterogeneous media with accurate local fields

    Get PDF
    A modified Green operator is proposed as an improvement of Fourier-based numerical schemes commonly used for computing the electrical or thermal response of heterogeneous media. Contrary to other methods, the number of iterations necessary to achieve convergence tends to a finite value when the contrast of properties between the phases becomes infinite. Furthermore, it is shown that the method produces much more accurate local fields inside highly-conducting and quasi-insulating phases, as well as in the vicinity of the phases interfaces. These good properties stem from the discretization of Green's function, which is consistent with the pixel grid while retaining the local nature of the operator that acts on the polarization field. Finally, a fast implementation of the "direct scheme" of Moulinec et al. (1994) that allows for parcimonious memory use is proposed.Comment: v2: `postprint' document (a few remaining typos in the published version herein corrected in red; results unchanged

    Velocity Dealiased Spectral Estimators of Range Migrating Targets using a Single Low-PRF Wideband Waveform

    Get PDF
    Wideband radars are promising systems that may provide numerous advantages, like simultaneous detection of slow and fast moving targets, high range-velocity resolution classification, and electronic countermeasures. Unfortunately, classical processing algorithms are challenged by the range-migration phenomenon that occurs then for fast moving targets. We propose a new approach where the range migration is used rather as an asset to retrieve information about target velocitiesand, subsequently, to obtain a velocity dealiased mode. More specifically three new complex spectral estimators are devised in case of a single low-PRF (pulse repetition frequency) wideband waveform. The new estimation schemes enable one to decrease the level of sidelobes that arise at ambiguous velocities and, thus, to enhance the discrimination capability of the radar. Synthetic data and experimental data are used to assess the performance of the proposed estimators

    Robustness maximization of parallel multichannel systems

    Get PDF
    Bit error rate (BER) minimization and SNR-gap maximization, two robustness optimization problems, are solved, under average power and bit-rate constraints, according to the waterfilling policy. Under peak-power constraint the solutions differ and this paper gives bit-loading solutions of both robustness optimization problems over independent parallel channels. The study is based on analytical approach with generalized Lagrangian relaxation tool and on greedy-type algorithm approach. Tight BER expressions are used for square and rectangular quadrature amplitude modulations. Integer bit solution of analytical continuous bit-rates is performed with a new generalized secant method. The asymptotic convergence of both robustness optimizations is proved for both analytical and algorithmic approaches. We also prove that, in conventional margin maximization problem, the equivalence between SNR-gap maximization and power minimization does not hold with peak-power limitation. Based on a defined dissimilarity measure, bit-loading solutions are compared over power line communication channel for multicarrier systems. Simulation results confirm the asymptotic convergence of both allocation policies. In non asymptotic regime the allocation policies can be interchanged depending on the robustness measure and the operating point of the communication system. The low computational effort of the suboptimal solution based on analytical approach leads to a good trade-off between performance and complexity.Comment: 27 pages, 8 figures, submitted to IEEE Trans. Inform. Theor
    • …
    corecore