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Wideband radars are promising systems that may provide

numerous advantages, like simultaneous detection of slow and

fast moving targets, high range-velocity resolution classification,

and electronic counter-countermeasures. Unfortunately, classical

processing algorithms are challenged by the range-migration

phenomenon that occurs then for fast moving targets. We

propose a new approach where the range migration is used

rather as an asset to retrieve information about target velocities

and, subsequently, to obtain a velocity dealiased mode. More

specifically three new complex spectral estimators are devised in

case of a single low-PRF (pulse repetition frequency) wideband

waveform. The new estimation schemes enable one to decrease the

level of sidelobes that arise at ambiguous velocities and, thus, to

enhance the discrimination capability of the radar. Synthetic data

and experimental data are used to assess the performance of the

proposed estimators.
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I. INTRODUCTION AND PROBLEM STATEMENT

Designing a nonambiguous radar mode, neither

in range nor in velocity, is of great interest for radar

operators. Indeed, prior to estimating both range

and velocity of targets, a nonambiguous mode is

very attractive as it allows targets to be discriminated

from clutter, thereby enhancing detection probability.

However, developing a nonambiguous mode is a

challenging task as conventional radar systems (such

as moving target indication (MTI) and coherent-pulse

Doppler radars) are limited by the intrinsic relation

that links the ambiguous velocity va to the ambiguous

range Ra, i.e.,

Rava =
¸0c

4
(1)

where ¸0 is the carrier wavelength and c is the speed

of light. In other words one cannot lessen one type of

ambiguity without worsening the impact of the other.

To alleviate this limitation classical radar systems

send a series of bursts with multiple, pulse-repetition

frequencies (PRFs) [1, 2]. As the range-Doppler locus

of a scatterer depends on the PRF, using multiple

PRFs may move the target out of the clutter, hence

avoiding blind ranges or velocities. Numerous works

have been published on that technique, e.g., [3]—[7].

However, using multiple PRFs presents several

drawbacks. It requires a more complex postprocessing

that may involve unfolding and correlation-like

techniques. Also, the time on target is increased since

several bursts are needed. A long dwell time is not

very attractive as it precludes rapid wide coverage

of the scene and may compromise the assumption of

constant velocity for the target. Also, performance of

the ambiguity removal process may be degraded in a

multiple-target scenario [8].

Given the constant ongoing advances in RF

hardware and signal processing, it is, nowadays,

conceivable to design nonambiguous radar systems

using a single PRF [9—13]. Such a mode is considered

in our study. More precisely the work presented

in this paper focuses on a radar system that uses

a single low-PRF wideband waveform aimed at

MTI operations. By wideband we mean that the

fractional bandwidth is on the order of 10%; that is,

the instantaneous bandwidth B represents 10% of

the carrier frequency f0. Also, the bandwidth B is

assumed to be large enough to give a range resolution

±R = c=(2B) of a few centimeters. On the other hand

the low-PRF assumption for our radar system ensures

that ranges of interest are nonambiguous, while

Doppler frequencies are highly ambiguous. Hence,

only Doppler ambiguities need to be resolved within

this framework. This might be achievable thanks

to the high range resolution (HRR) feature of the

waveform as highlighted hereafter.

Unlike low range resolution (LRR), echo

location systems, HRR radars are prone to the



well-known range-walk phenomenon. Indeed, due

to the HRR, a moving point-target may not be

confined anymore into a single range gate during the

coherent processing interval (CPI). In other words, in

wideband radar, the Doppler effect affects not only

the carrier phase but also the complex envelope of

the echoed signal. The faster the point-target, the

greater the impact on its envelope. Several authors

[8, 13—15] have shown that, for linear migration, the

point-target signature can be easily expressed in the

fast-frequency/slow-time domain. In such a case the

fast-frequency domain is obtained by performing

a Fourier transform on the fast-time limited to an

LRR segment that contains the target (with allowance

for range-walk). The point-target signature in the

fast-frequency/slow-time domain can then be seen

as a conventional bi-dimensional sinusoid–whose

frequencies account, respectively, for the carrier-phase

Doppler shift and the initial range of the target–and

cross-coupling terms that account for range migration.

These terms depend on the target velocity. Therefore,

it is reasonable to think that, if carefully processed,

they might bring enough information to resolve

velocity ambiguities.

Thus, to obtain a nonambiguous mode in an HRR

context, it is crucial to carefully design not only the

transmitted waveform but also the processing of the

received signal. HRR/MTI processing has to overcome

several challenges. Among them, it has to suppress

clutter and to take into account, simultaneously, the

range-walk of a moving target, a possible spreading

of the target over several adjacent range cells, and

the presence of multiple targets in the LRR segment.

Hereafter is given a succinct review about detection

algorithms that have been applied and/or developed

for HRR radars. We discuss them in light of their

ability to suppress clutter and to remove velocity

ambiguities.

Conventional Doppler processing has been tested

for wideband signals, and it is obviously not satisfying

as it does not take the range-walk of the target into

account. On one hand it is unable to separate clutter

from targets whose velocity is competing (modulo va)

with the ones of the clutter; on the other hand, it leads

to huge spreading and loss on the target peak [16].

In [10] the author underlines the inappropriateness

of conventional Doppler processing for HRR radar.

Instead, he proposes a two-step coherent algorithm.

The first step aims at suppressing clutter in the

fast-frequency/slow-frequency domain by a standard

notch filter. Then, in the second step, the target energy

is coherently integrated while testing the space of

possible target speeds. Unfortunately, in the case of

velocity ambiguities, the clutter suppression process

induces some losses for aliased targets.

A single coherent integration processing allows the

target gain to be recovered and velocity ambiguities

to be moderated [8]. It can be implemented with a

fast algorithm based on a Keystone-like transform

[17, 18]. The resulting range-Doppler map can be

seen as an ideal point-target map blurred by a point

spread function, i.e., the ambiguity function of the

transmitted waveform. Several wideband ambiguity

functions have been studied in the literature and may

be used to estimate target features, such as the time

delay and the radial velocity, see e.g., [16], [19]—[23].

However, though wideband ambiguity functions have

the desirable property of transforming aliasing lobes

into sidelobes, the level of these sidelobes remains

high. This leads to two main drawbacks. First, a

moving target can be hidden in or destructed by the

sidelobes of another target. Secondly, the sidelobes’

level of clutter signal may be very high, even higher

than that of a single moving scatterer. Indeed, given

an LRR segment, clutter sidelobes from each range

gate tend to add up via constructive interferences

[24] (provided that the clutter signal is present at

each range gate). In other words a simple coherent

integration does not properly remove blind velocities.

In [25], [26], a migrating target indicator (MiTI)

is proposed to suppress clutter without introducing

a specific loss for aliased targets. The essence of

the MiTI is to discriminate the clutter signal as a

nonmoving component in the received signal. More

precisely the technique is based on the incoherent

subtraction of range-velocity maps obtained from

the coherent integration of two pulse subintervals.

This method allows nonmoving components to be

conveniently suppressed; nonetheless, the sidelobes

of moving targets remain high.

Finally, in [14], the authors propose an iterative

algorithm that suppresses clutter and estimates

parameters of interest for an HRR target. The

technique is extended in [15] to the case of multiple

moving targets received on a phased array. In both

cases the problem of velocity ambiguities is not taken

into consideration.

In this paper, given the state-of-the-art, we are

interested in developing methods that allow one

to dealias the velocity by using a single low-PRF

wideband waveform in the framework of HRR/MTI

radars. To do so we propose a new complex spectral

estimation algorithm aimed at decreasing the level

of sidelobes that occur at ambiguous velocities.

This technique is the direct continuation of the

work presented recently in [27], where extended

versions of the Capon and the APES filters have

been proposed. Capon and APES algorithms are

well-known adaptive filtering techniques used for

complex spectral estimation in the case of narrowband

signals [28—31]. For instance, they have been

successfully applied to narrowband synthetic aperture

radar (SAR) data. In [27] wideband versions of both

algorithms, namely the W-Capon and the W-APES,

have shown similar trends as their narrowband

counterparts, while alleviating, in part, the velocity



ambiguity. Unfortunately, the level of sidelobes

remains high for fast moving targets, presumably

due to an approximation of stationarity made during

the derivation of the estimators. So as to overcome

this restrictive approximation, we propose, here, an

iterative process, based on the W-Capon, that allows

one to fully take into account the range-walk of each

point-target present in the scene. As explained later

the principle is inspired by the CLEAN algorithm

[32, 33]. We stress at this point that we are only

interested in estimating, point-by-point, the complex

amplitude of the range-velocity map. The final design

of a constant false alarm rate (CFAR) detector is out

of the scope of this work.

The remaining of the paper is organized as

follows. In Section II the data model for the received

signal is presented. Our interest focuses, more

specifically, on a multiple point-target scenario.

Note that the present study is restricted to the case

where target motion can be neglected in the duration

of a single pulse but not during the CPI. Within

this framework the estimation problem of interest

is formulated in Section IV. The W-Capon and

the W-APES techniques are recalled, and the new

iterative process based on the W-Capon estimator, is

described. Finally, Section V studies the performance

of these wideband spectral estimators. Analysis is

performed with both synthetic data and experimental

data provided by the Delft University of Technology

(Tu-Delft) [34]. Conclusions are drawn in Section VI.

II. DATA MODEL FOR WIDEBAND RADAR

This section introduces the data model for a

wideband radar that sends a single series of coherent

pulses with a low PRF. First, the model is restricted to

a single point-scatterer with constant radial velocity.

Then, the data model is extended to a more realistic

scenario with internal receiver noise and where several

targets may be involved.

A. Single Point-Target Model

A single point-target is considered here. It is

shown that, after standard preprocessing operations

(demodulation, down-conversion, and sampling), the

signature of the echoed signal can be expressed in the

fast-frequency/slow-time domain by a bi-dimensional

sinusoid with cross-coupling terms.

1) Received Signal: The radar transmits a

coherent burst of M pulses

stx(t) =

M¡1X
m=0

up(t¡mTr)ej2¼f0t (2)

where up(t) is the complex envelope of a single pulse,

Tr is the pulse repetition interval (PRI), and f0 is the

carrier frequency. The envelope is assumed to have

a duration T and a fractional bandwidth such that

B=f0 ¼ 10%. If a moving point-scatterer is present in

the scenario, the signal received on the radar antenna

can be approximated by a delayed and attenuated

version of the transmitted signal (2), i.e.,

srx(t) = ®stx[t¡ ¿(t)] (3)

where ® is the complex amplitude response of the

target and ¿ (t) is its round-trip delay. Assuming that

the radial velocity v of the target is constant during

the CPI and small, with respect to the speed of light,

the round-trip delay can be approximated by [35]

¿ (t) = ¿0¡
2v

c
t (4a)

with

¿0 =
2R0
c

(4b)

where R0 and ¿0 are, respectively, the initial range

and delay. Note that, by convention, positive velocity

indicates that the target is moving towards the radar.

Using (2) and (4a) in (3) leads to

srx(t) = ®

M¡1X
m=0

up

·μ
1+

2v

c

¶
t¡ ¿0¡mTr

¸

£ exp
·
j2¼f0

μ
1+

2v

c

¶
t

¸
(5)

where constant phase terms have been (and will

be systematically) absorbed into the complex

amplitude ®.

As shown by (5) the received signal is affected by

two main effects. First, the envelope up is translated

by a delay that remains constant during the PRI: at

the mth pulse the envelope is translated by a delay

equal to ¿0 +mTr. Secondly, the Doppler effect, due

to the relative motion of the target, distorts both

the carrier and the envelope. Note that, contrary to

the narrowband case, the effect on the envelope has

to be considered. More precisely, as stated in the

Introduction, we assume that the target range-walk

is negligible during a single pulse but not during the

whole CPI. This is tantamount to considering that

the phase rotation 2¼B(2v=c)T is negligible while the

phase rotation 2¼B(2v=c)MTr may not be, i.e.,

vT¿ ±R (6a)

and

vMTrÀ ±R (6b)

where the range resolution is given by

±R =
c

2B
: (7)

Finally, from (5), one recovers the usual physical

phenomenon: if the target is moving towards the radar,

the time scale is compressed, whereas, if it moves

away, the signal is dilated.

2) Preprocessing: The received signal (5) is then

successively down-converted to baseband, matched



filtered, and sampled. For notational convenience let

us introduce the fast-time t0 and the slow-time mTr by
making the following change of variables

t0 = t¡mTr:
After removing the carrier, the received baseband

signal for the mth pulse is, thus, given by

sbb(t
0,m) = ®up

·
t0 ¡ ¿0 +

2v

c
mTr

¸
£ exp

·
j2¼f0

2v

c
(t0+mTr)

¸
(8)

where the target range remains constant over the pulse

duration (i.e., assumption (6a)). The baseband signal

is then range matched filtered, which is equivalent to

cross-correlating, temporally, the signal (8) with the

envelope up(t
0), i.e.,

smf(t
0,m) =

Z +1

¡1
sbb(»)u

¤
p(»¡ t0)d»:

Using Parseval’s theorem and conventional properties

of the Fourier transform, the matched filter output

for the mth pulse is given in the fast-time/slow-time

domain by

smf(t
0,m) = ®exp

£
j2¼f0(2v=c)mTr

¤
£ exp£j2¼(2v=c)f0[¿0¡ (2v=c)mTr]¤
£
Z +1

¡1
Up

·
f¡ 2v

c
f0

¸
U¤p (f)

£ exp£j2¼f[t0 ¡ (¿0¡ (2v=c)mTr)]¤df
(9)

where Up(f) is the Fourier transform of the complex

envelope. Observing in (9) that the phase rotation

(2v=c)2f0MTr is negligible given the range of expected

target velocities and that the fractional bandwidth

ensures that B=f0À 2v=c, the matched filter output

boils down to

smf(t
0,m) = ®exp

£
j2¼f0(2v=c)mTr

¤£Z +1

¡1
jUp(f)j2

£ exp£j2¼f[t0 ¡ (¿0¡ (2v=c)mTr)]¤df:
(10)

Then, assuming an ideal constant flat spectrum for the

complex envelope, one has

smf(t
0,m) = ®exp

£
j2¼f0(2v=c)mTr

¤
£
Z B

0

exp
£
j2¼f[t0 ¡ (¿0¡ (2v=c)mTr)]

¤
df:

(11)

The analog-to-digital (A/D) converter that follows

the matched filter samples the signal in the fast-time

domain at a rate 1=B so that the digital signal to be

processed is, finally, for `= 0, : : : ,K ¡1,

smf

μ
`

B
,m

¶
= ®exp

£
j2¼f0(2v=c)mTr

¤
£ sinc

½
¼

·
`¡
μ
`0¡

vmTr
±R

¶¸¾
(12)

where `0 = ¿0B is the initial range gate of the

target and K is the total number of range gates

approximately equal to K ¼ BTr. Note that, given the
wideband and the low-PRF assumptions, K might be

quite large.

3) Signature in the Fast-Frequency/Slow-Time

Domain: At this point it is appealing to express (12)

in the fast-frequency/slow-time domain. To do so we

notice, from (12), that the target component is mainly

present in the range gate interval, e.g., for v ¸ 0½
`0¡

v(M ¡1)Tr
±R

, : : : ,`0

¾
(13)

whose size is small compared with the total number

of cells K. To coherently process the target, it is thus

sufficient to focus our attention on a few range cells

that contain the target, namely L range cells that

define our LRR segment. Without loss of generality

we assume that the target is confined in the first range

gates `= 0, : : : ,L¡1. Then, the fast-frequency domain
denotes the Fourier transform of the fast-time domain

limited to this LRR segment. Hence, the target signal

can be approximated in the fast-frequency/slow-time

domain by

Smf(`,m)¼ ®exp
£
j2¼f0(2v=c)mTr

¤
£ exp£¡j2¼[`0¡ (vmTr=±R)](`=L)¤

(14)
where ` stands for the subband index.

Given (14) the signature of a point-target in the

fast-frequency/slow-time domain can be summed up

in matrix A of size L£M, whose (`,m)th element is
given by

[A]`,m = e
j2¼fr`ej2¼fDmej2¼¹fD`m for `= 0, : : : ,L¡ 1

m= 0, : : : ,M ¡ 1
(15)

where fr and fD stand, respectively, for the

range-frequency and the Doppler frequency, i.e.,

fr =¡
`0
L

(16a)

fD = f0
2v

c
Tr (16b)

and ¹ is a constant coefficient that stands for the

“fractional bandwidth per subband”

¹=
B=L

f0
: (17)



Fig. 1. Amplitude (modulus only) of migrating point-target. (a) Fast-time/slow-time domain. (b) Fast-time/slow-frequency domain.

(c) Fast-frequency/slow-time domain. (d) Fast-frequency/slow-frequency domain. Scenario parameters: v = 2:1va, `0 = 64, L= 128,

M = 128, ¹= 7:8£ 10¡4.

Note that, in the following, we use the vectorized

version of the target signature, i.e.,

a= vecfAg (18)

where vecfg is the operator that stacks column by
column the matrix inside the bracket.

4) Interpretation of the Target Signature:

Observing (15) the target signature can be interpreted

as a bi-dimensional sinusoid with frequency (fD,fr)

and cross-coupling terms that account for the range

migration. To fully understand the meaning of (15),

the modulus of the amplitude for a moving target with

unit amplitude is depicted in Fig. 1 in four different

domains. These domains are obtained by standard

Fourier and inverse-Fourier transforms applied to (15).

a) In the fast-time/slow-time domain (Fig. 1(a)),

the range gate of the target is described by a line

whose equation is given by

tfast(m) =¡L[fr+¹fdm] =
R0
±R
¡ vTr
±R
m: (19)

Hence, the linear migration and the initial range-gate

imposed by Assumption (4a) are both recovered.

Note that the faster the scatterer, the higher the slope

vTr=±R, and consequently, the greater the number of

range bins crossed by it.

b) In the fast-frequency/slow-frequency domain

(Fig. 1(d)), for a given subband ` the classical target

signature for narrowband radar is recovered with a

slow-frequency equal to

fslow(`) = fD(1+¹`) = f0
2v

c
Tr+

2v

c

B

L
Tr`: (20)

Hence, a range migration in the fast-time/slow-time

domain results in a “slow-frequency migration.” The

faster the target, the wider the bandwidth occupied in

the slow-frequency domain. Note that (20) refers to

the slow-frequency that has been unfolded.

c) In the fast-time/slow-frequency domain

(Fig. 1(b)), the target peak is spread over a rectangle.

Note that this is the target response to conventional

Doppler processing. The faster the target, the greater

the spreading. Moreover, the target location may be

aliased over the slow-frequency due to the low PRF.

d) Finally, in the fast-frequency/slow-time domain

(Fig. 1(c)), the modulus of the target amplitude is

constant.

B. Multi-Target Scenario

In Section II-A our attention has been limited

to the case of a single point-target. From now on a

more realistic scenario is considered, where multiple

scatterers are present in the scene and where the

internal receiver noise is also taken into account.

We denote by Z the data matrix of size L£M that

is obtained after applying 1) standard preprocessing

operations, 2) a selection of L range gates, and

3) a range-Fourier transform as depicted in the



Fig. 2. Flowchart: standard preprocessing+selection of L

cells+range transform.

flowchart of Fig. 2. The vector z= vecfZg denotes
the vectorized version of the matrix Z.
In the following it is assumed that the received

signal z contains the response of Nt scatterers
embedded in thermal noise

z=

NtX
t=1

®tat(!D,t,!r,t) +n (21)

where ®t and at are, respectively, the amplitude
and the signature of the tth point-scatterer with

frequency pair (!D,t,!r,t)
1 and where n is the internal

receiver noise. The noise sequence n is modeled

as a zero-mean complex Gaussian distribution

CN (0,¾2ILM), where ¾2 is the noise power. We
assume in this work that the diffuse part of the

clutter, if any, has been filtered in the preprocessing

operations with standard techniques using, for

instance, secondary data obtained from adjacent LRR

segments to the one of interest, e.g., [36].

In the remainder of the paper, we are interested

in estimating the complex amplitudes ®ts of the Nt
scatterers introduced in (21). Three new wideband

spectral estimators are presented and studied for

different scenarios.

III. FORMULATION OF THE ESTIMATION PROBLEM

In order to formulate the problem of estimation,

we follow the lines of [29] (where the APES estimator

is derived) while taking into account the specificities

of the wideband context. Given the problem of

interest, the maximum-likelihood (ML) principle

is invoked in order to build new adaptive spectral

1To obtain more compact expressions, the target signature can be

expressed with respect to !r = 2¼fr and !D = 2¼fD .

estimators. Prior to designing such estimators, and to

motivate our study, we present the performance of an

approximate ML estimator that would be obtained in

the clairvoyant case. This estimator corresponds to a

quasi-optimal case and is the reference for comparing

the performance of other estimators.

A. Analysis Model

Let us consider the bi-dimensional data-sequence

Z defined previously in (21). As in [29] we intend

to estimate, for all frequency pairs (!D,!r), the

amplitude of a wideband target that may be present

at this frequency. To do so the following data model is

assumed for m= 0, : : : ,M ¡ 1 and for `= 0, : : : ,L¡1
[Z]`,m(!D,!r) = ®(!D,!r)exp

£
j(m!D + `!r+m`¹!D)

¤
+ e`,m(!D,!r) (22)

where ®(!D,!r) is the complex amplitude of a

target at frequency (!D,!r) and where e`,m(!D,!r)

represents the unmodeled and undesired components

at this frequency. Note that, as we wish to alleviate

the velocity ambiguities in a low-PRF context, the

frequency range of interest is given by

¡ !r
2¼
2 [0,1] (23a)

!D
2¼
2
h
¡nva
2
,
nva
2

i
(23b)

where nva 2N¤ is the maximum Doppler ambiguity

factor expected for a target. In other words nva is the

smallest integer that verifies

jvmaxj ·
nvava
2

where vmax is the maximum velocity expected for a

target.

As done in [29] a new data set is created from

the initial sequence Z. More precisely a sliding

window of size L̄£ M̄ is applied to Z so as to obtain

NLNM submatrices with NL = L¡ L̄+1 and NM =
M ¡ M̄ +1. Each submatrix is then vectorized into an

L̄M̄-length vector denoted by zp,q. Further following

the procedure of [29], each snapshot can be expressed

as [27]

zp,q = ®ap,q+ ep,q (24)

for p= 0, : : : ,NL¡ 1 and q= 0, : : : ,NM ¡ 1 and where
the dependency on (!D,!r) is not explicitly written in

order to lighten the expression and where

ap,q = e
j!Dqej!rpej¹!Dpqā¯fbp− cqg (25a)

bp = [1 ej¹!Dp : : :ej¹!Dp(M̄¡1)]T (25b)

cq = [1 ej¹!Dq : : :ej¹!Dq(L̄¡1)]T: (25c)

In (25a) the vector ā represents the substeering vector

for the (0,0)th sliding window, i.e., the vectorized



matrix A described by (15) when its size is reduced to

L̄£ M̄. The symbols ¯ and − refer to the Hadamard
and the Kronecker matrix products, respectively.

Finally, note that the cross-coupling terms ej¹!D`m that

account for the range migration in (15), result in the

term ej¹!Dpqbp− cq for the snapshot zp,q.
In the following it is assumed, as in [29], that the

complex amplitude ® is an unknown deterministic

quantity, and that the noise vectors ep,q are centered,

independent (hence mutually uncorrelated), and

distributed according to a complex Gaussian

distribution, i.e.,

ep,q » CN (0,Qp,q) (26a)

and

Efep,qeHr,sg=Qp,q±p,r±q,s (26b)

where Qp,q is the L̄M̄ £ L̄M̄ covariance matrix of the

snapshot ep,q. Given (26), two important remarks are

in order. First, the hypothesis of independence is very

strong and is rigorously not correct as two adjacent

windows are highly overlapped. However, the same

assumption is made in [29] and allows one, in any

event, to design efficient estimators for the complex

amplitude in the narrowband case. We thus follow

this path here. Secondly, it is worth noticing that the

matrices Qp,q are highly likely to be nonstationary. In

other words these matrices may actually depend on

the window indices p and q. For instance, consider

the simplified scenario where ep,q would consist of

a single point-scatterer with frequency (!̃D, !̃r). The

noise covariance matrice of the (p,q)th window would

then be given by

Qp,q / fā(!̃D, !̃r)ā(!̃D, !̃r)Hg
¯f(bp(!̃D, !̃r)bp(!̃D, !̃r)H)

− (cq(!̃D, !̃r)cq(!̃D, !̃r)H)g (27)

where the symbol / means proportional to. In the
narrowband context, i.e., ¹= 0, the range migration

is not present and only the first term of (27) remains

so that the matrices Qp,q are all equal [29]. Here, the

range migration prevents the matrices from being

equal. The faster the moving scatterers in Qp,q, the

greater the nonstationarity of the matrices Qp,q.

B. ML Estimation in the Clairvoyant Case

Let us remind the reader that our goal is to

estimate the deterministic amplitude ® for each

frequency (!D,!r) given the problem described by

(24) and (26). At this point we propose developing

estimators of ® based on the ML principle. To

motivate the work presented in the following sections,

we focus our attention first on the clairvoyant case,

that is, when the noise covariance matrices Qp,q are

known exactly.

1) Clairvoyant Case: Given the problem (24) and

(26), the ML estimator of ® in the clairvoyant case is

defined by

®̂clair = argmax
®
¤(fzp,qg j ®,fQp,qg)

where ¤( ) is the log-likelihood function. According

to the estimation problem previously described, the

log-likelihood (up to a constant factor) is given by

¤(fzp,qg j ®,fQp,qg)
=¡

X
p,q

ln(jQp,qj)¡
X
p,q

(zp,q¡®ap,q)H

£Q¡1p,q(zp,q¡®ap,q) (28)

where j:j is the determinant of a matrix. The argument
® that maximizes (28) minimizes as well the

expressionX
p,q

(zp,q¡®ap,q)HQ¡1p,q(zp,q¡®ap,q)

=
X
p,q

zHp,qQ
¡1
p,qzp,q¡

¯̄̄P
p,q a

H
p,qQ

¡1
p,qzp,q

¯̄̄2P
p,q a

H
p,qQ

¡1
p,qap,q

+
X
p,q

aHp,qQ
¡1
p,qap,q£

¯̄̄̄
¯®¡

P
p,q a

H
p,qQ

¡1
p,qzp,qP

p,q a
H
p,qQ

¡1
p,qap,q

¯̄̄̄
¯
2

:

Consequently, the ML estimator of ®, for known

matrices Qp,q, can be easily expressed in closed form

by the ratio

®̂clair =

P
p,q a

H
p,qQ

¡1
p,qzp,qP

p,q a
H
p,qQ

¡1
p,qap,q

: (29)

To illustrate the performance of the clairvoyant

estimator in a realistic radar scenario, we define an

approximate ML estimator where the covariance

matrices Qp,q in (29) are replaced with the matrices

Rp,q defined by

Rp,q = Efzp,qzHp,qg: (30)

More specifically the correlation matrices Rp,q are

built according to the generation model (21), i.e.,

Rp,q =

NtX
t=1

j®tj2atp,qaHtp,q +¾2IL̄M̄ : (31)

Plugging (31) into (29), one obtains finally

®̂a-clair =

P
p,q a

H
p,qR

¡1
p,qzp,qP

p,q a
H
p,qR

¡1
p,qap,q

: (32)

2) Performance in Clairvoyant Case: To illustrate

the potential of the estimator (32), we consider a

simple scenario where two point-targets are present.

Both targets have the same complex amplitude and

initial range but different velocities. More precisely



Fig. 3. Spectral estimates. (a) Coherent integration. (b) ML estimator of ® when covariance matrices Rp,q are known. Scenario

parameters: L= 16, M = 16, ¹= 0:0063, target 1 (v1,`0,1) = (0:5va,8), j®1j2 = 1, target 2 (v2,`0,2) = (1:5va,8), j®2j2 = 1, thermal noise
power ¾2 = 0:01.

it is assumed that their velocities are one ambiguous

velocity va apart. We compare the spectral estimates

obtained with (29) with the spectral estimates obtained

from a simple coherent integration2 [8, 18], i.e.,

®̂coh-sum =
aHz

aHa
(33)

where a is the steering vector (18) with frequency

(!D,!r). Note that the range-velocity map for (33) is

computed with the fast-algorithm described in [18].

Figure 3 shows the modulus of the spectral

estimates obtained from both spectral estimators

(32) and (33). From both range-velocity maps,

several observations can be made. First, (33) is not an

efficient spectral estimator as can be seen in Fig. 3(a).

Indeed, the use of the coherent summation method

results in high sidelobes and wide peaks. For this

specific scenario mainlobe and sidelobes of both

targets are not identifiable. Unlike the estimator (33)

the clairvoyant estimator (32) accurately restores

the amplitude of the targets, reduces the mainlobe

width, and suppresses the sidelobes. Note that the

range-velocity resolution is thus drastically increased.

Also, the average level of the scatterer-free domain is

decreased as compared with the one observed with the

coherent integration.

The spectral estimator (32), and implicitly (29),

are thus appealing techniques that can alleviate

velocity ambiguity of point-targets for wideband

radar. Unfortunately, such estimators cannot be

implemented in practical cases. In order to circumvent

2Note that the coherent summation in a wideband context is the

counterpart of the fast Fourier transform (FFT) for narrowband

signals.

this drawback, we propose, in the following section,

developing adaptive versions of the clairvoyant

estimator (29).

IV. ADAPTIVE SPECTRAL ESTIMATORS

In this section we describe three new spectral

estimators that are adaptive versions of the clairvoyant

ML estimator (29) for wideband radar. As discussed

previously (29) relies on the knowledge of the noise

covariance matrices Qp,q. In this section we consider
that there is no prior knowledge about the matrices

Qp,q that have to be estimated from the observed data

set fzp,qg. Unfortunately, for each matrix Qp,q we have
access only to a single realization, i.e., the subvector

zp,q. To overcome this problem two strategies are

proposed hereafter. The first strategy simplifies the

problem by assuming that the matrices Qp,q are
equal to a common matrix Q. This matrix Q is then

estimated by using the observation vectors zp,q. This

leads to two spectral estimators, the W-Capon and

the W-APES. The second strategy accounts for the

nonstationarity of the noise covariance matrix, one

scatterer after another. To do so an iterative process,

based on the W-Capon, is developed.

A. Stationary Assumption

We assume herein that the noise covariance

matrices Qp,q are equal to a common covariance
matrix, i.e.,

Qp,q =Q, 8p,q: (34)

Given the initial problem (24), this is tantamount to

taking into account the nonstationarity of the target

under test ap,q at the frequency of interest (!D,!r),
while neglecting the nonstationarity of the noise

vector ep,q. In this case the normalized log-likelihood



(28) reduces to

¤(fzp,qg j ®,Q)

=¡ ln(jQj)¡ tr
(
Q¡1

1

NMNL

X
p,q

(zp,q¡®ap,q)(zp,q¡®ap,q)H
)

(35)

where trfg stands for the trace of the matrix between
brackets. From (35) two spectral estimators based on

the ML principle are presented hereafter [27]. Note

that the hypothesis of stationarity (34) is not valid in a

scenario with fast-moving scatterers and/or in case of

numerous moving scatterers.

1) W-APES: The first spectral estimator presented

here is the conventional ML estimator of ® that

maximizes (35). This estimator is referred to as the

W-APES and is defined by

®̂wapes = argmax
®

½
max
Q
¤(fzp,qg j ®,Q)

¾
: (36)

It is shown in the Appendix that solving (36) is

tantamount to minimizing a cost function that

belongs to a class of problems that does not seem

to have a closed-form solution [37, 38]. Usually,

standard optimization techniques are used to

obtain the solution. In this paper, to avoid the

eigendecomposition (54) introduced in the Appendix

and required for each frequency pair (!D,!r), an

iterative approach is invoked instead [39]. More

specifically an iteration is set between the two partial

derivatives of (35)–with respect to ® and to Q–that
have been equated to zero

®=

P
p,q a

H
p,qQ

¡1zp,qP
p,q a

H
p,qQ

¡1ap,q
(wapes1)

Q=
1

NMNL

X
p,q

(zp,q¡®ap,q)(zp,q¡®ap,q)H:

(wapes2)

While initializing the iteration (wapes1)—(wapes2)

by setting Q= R̂, where R̂ is the sample correlation
matrix

R̂=
1

NMNL

X
p,q

zp,qz
H
p,q (37)

no problem of convergence has been encountered in

our simulations.

2) W-Capon: Herein, we propose deriving a

second adaptive version of the spectral estimator

(29) that is less complex than (36). Within the

narrowband framework it is possible to use a two-step

procedure that results in the Capon estimator [29].

We apply a similar two-step procedure here for

the wideband context and denote by W-Capon the

resulting estimator. In the first step, the ML estimator

of ® is derived with respect to the problem given by

(24), (26), and (34) while assuming that the noise

covariance Q is known. Then, in a second step,

the matrix Q is replaced by the sample correlation

matrix R̂ (37). Following this procedure it is

straightforward to show that the W-Capon estimator

can be expressed as

®̂wcapon =

P
p,q a

H
p,qR̂

¡1zp,qP
p,q a

H
p,qR̂

¡1ap,q
: (38)

Contrary to the W-APES estimator (36), the W-Capon

estimator (38) has a closed-form expression.

Moreover, its computation requires only one matrix

inversion that does not depend on the frequency of

interest (!D,!r). This makes the W-Capon method

very interesting in terms of computational complexity.

REMARK 1 If the alternate maximization proposed

in Section IV-A.1 to derive the W-APES (56) is

initialized with Q= R̂, the first iteration of this

maximization (wapes1) yields the W-Capon estimator.

3) Limits of the W-Capon and W-APES Estimators:

In Sections IV-A.1 and IV-A.2, we propose two new

adaptive spectral estimators designed for wideband

radar signals. Both are derived under the assumption

of a stationary noise covariance matrix while taking

into account the migration of the target under test. As

shown in Section V, these estimators are acceptable

for relatively slow targets. In this case, the height

and width of the spectral peaks are reasonable,

while sidelobes remain relatively low. However, for

faster targets, sidelobes become very high. In the

next section a new method is proposed to further

enhance the spectral estimation performance when the

stationarity assumption is not satisfied.

B. Nonstationary Assumption

We propose herein a third adaptive version of the

spectral estimator (29) considering the migration of

the target under test but also the migration of each

scatterer present in the scenario. After presenting

the principle of the new estimation technique, the

procedure is carefully detailed step-by-step. Finally,

important remarks about the proposed algorithm are

highlighted. As explained hereafter the estimator

assumes that the number of scatterers Nt in the

scenario is small enough to ensure a certain level of

sparsity in the range-velocity map. This assumption

is not especially made for the W-APES and W-Capon

estimators.

1) A CLEAN-Like Method: In a first attempt to

take into account the migration of every scatterer

present in the scene, we propose to simplify the

estimation problem by replacing in (29) the matrices

Qp,q with the estimates of the matrices Rp,q derived

using a specific structure inspired by (31). We see

in Section III-B that, in the clairvoyant case, i.e.,

for known matrices Rp,q, this leads to appealing



estimation strategies. The spectral estimator proposed

herein is referred to as the iW-Capon estimator and is

defined as follows

®̂iwcapon =

P
p,q a

H
p,qR̂

¡1
p,qzp,qP

p,q a
H
p,qR̂

¡1
p,qap,q

(39)

where R̂p,q is a structured matrix estimator for Rp,q
given by

R̂p,q =

N̂tX
t=1

j®̂tj2âtp,q âHtp,q + R̂n (40)

where

N̂t is the estimated number of point-scatterers in the

scene;

®̂t is the complex amplitude of the tth point-target;

âtp,q is the steering subvectors of the tth point-target

with estimated frequency (!̂D,t, !̂r,t);

R̂n is the unstructured covariance matrix that refers to

the stationary noise component which does not depend

on the indices (p,q).

In this paper we assume that the number of

scatterers Nt is exactly known so that N̂t =Nt (this

assumption is discussed later). To estimate the other

parameters involved in the estimator of Rp,q (40),

we adopt the following reasoning. In relatively

sparse-scatterer scenarios, we have observed that in

the range-velocity map obtained from a W-Capon

estimation (38), the brightest point corresponds to

the position of a true point-target. In other words

we assume that the brightest spot is not the result

of constructive interferences of sidelobes from

other scatterers (similar assumption is made for

the CLEAN algorithm [33]). From this observation

we propose to refine the estimation of Rp,q in the

following way. The structured nonstationary part of

the estimator (40) is assumed to be temporarily due

to one scatterer, i.e., Nt = 1, and it is built from the

estimated complex amplitude and frequency pair

of the brightest point. The unstructured stationary

part R̂n is built as the sample correlation matrix of

a new data set that is estimated from the initial set

z from which the first estimated scatterer has been

removed. The correlation matrices Rp,q are thus

“de-stationarized” with respect to the first point-target.

To continue we propose to derive a new W-Capon

range-velocity map (38) with these de-stationarized

matrices Rp,q. By doing so we hope that the sidelobes

of the brightest target will be drastically reduced. The

two brightest points of this map can then be used to

de-stationarize (40), assuming temporarily that Nt = 2.

The process can then be repeated Nt times until each

point-target has been taken into account in order

to estimate the structured nonstationary part of the

estimator (40).

To sum up we propose to set an iterative process

(with Nt iterations) to estimate the matrices Rp,q. Each

iteration can be decomposed in two main steps.

First step: a W-Capon-like estimation procedure is

applied to the initial data vector z.

Second step: the sample covariance matrices R̂p,q are

updated.

By updating, we mean that at each iteration, the

nonstationarity of the matrices Rp,q is taken into

account for one more scatterer. Note that the iterative

W-Capon (iW-Capon) algorithm is similar to a

CLEAN procedure [32, 33].

2) Iterative Procedure: Herein we detail the

proposed iW-Capon algorithm, which computes

the estimators (39) and (40) iteratively. After an

initialization step, Nt iterations are performed so as

to de-stationarize the matrices Rp,q one scatterer

after another. Note that for the sake of clarity,

the dependence on the frequency pair (!D,!r) is

sometimes reintroduced. The bi-dimensional domain

ID £Ir represents the frequency points considered for
the spectral analysis. It is required that this grid be

thin enough to obtain good results. Also, to correctly

initialize the algorithm, it is assumed that within

this domain, the scatterers map is sparse enough to

ensure that the brightest point in the W-Capon map

corresponds to a true scatterer.

b) Initialization: First, the algorithm is initialized

by assuming that the correlation matrices R̂p,q equal

the stationary solution, i.e.,

R̂(0)p,q = R̂ (41)

where R̂ has been defined in (37).

b) Iterations for i= 1 to Nt: The ith iteration

aims to take into account the range-migration of

the i brightest point-targets. Each iteration can be

decomposed in two main steps.

Step 1 W-Capon-like estimation applied to z

In the first step a W-Capon-like estimation (38) is

applied to the initial data set fzp,qg but with modified
matrices R̂p,q. More specifically, for all (!D,!r) 2
ID £Ir, a W-Capon-like estimate is computed as
follows

®̂(i)(!D,!r) =

P
p,q a

H
p,q(!D,!r)[R̂

(i¡1)
p,q ]¡1zp,qP

p,q a
H
p,q(!D,!r)[R̂

(i¡1)
p,q ]¡1ap,q(!D,!r)

:

(42)

The expression (42) is directly obtained from (38) by

replacing the correlation matrix R̂ by the matrices

R̂(i¡1)p,q obtained at the previous iteration (i¡1). The
estimates R̂(i¡1)p,q are assumed to have a nonstationary

part due to the i¡ 1 brightest scatterers and a
stationary part that does not depend on the subwindow



indices (p,q). Note that for i= 1, the first step reduces

to a W-Capon map computation.

Step 2 Updating of the covariance matrices R̂p,q

In the second step the covariance matrices R̂p,q are

updated. The matrices R̂(i)p,q are estimated by taking

into account the migration of an additional scatterer,

i.e., the ith brightest scatterer. To do so the following

steps are proposed.

Step 2.1 Estimation of the nonstationary part

of R̂(i)p,q First, to update the matrices R̂(i)p,q, we estimate

the nonstationary part of the matrices that correspond

to the i brightest spots in the range-velocity map (42).

Hence, we are searching for the i first local maxima in

the map defined by

(!̂(i)D,t, !̂
(i)
r,t ) = arg maxt

(!D ,!r)2ID£Ir
j®̂(i)(!D,!r)j2 (43)

for t= 1, : : : , i, where maxk denotes the kth local

maximum in decreasing order (thus max1 is the global

maximum). The amplitude and signature of the i

brightest targets are then estimated, respectively, by

®̂(i)t = ®̂
(i)(!(i)D,t,!

(i)
r,t ) (44a)

â(i)t = a(!
(i)
D,t,!

(i)
r,t ): (44b)

Step 2.2 Estimation of the stationary part of R̂(i)p,q

To fully update the matrices R̂(i)p,q, we estimate their

stationary part that corresponds to the Nt¡ i remaining
scatterers plus white noise. We create a new data

vector z(i) that is exempt from the components ®̂(i)t â
(i)
t

by successively projecting z onto their orthogonal

subspaces

z(i) =

iY
t=1

P(i)t z (45)

where P(i)t is defined as

P(i)t = ILM ¡
â(i)t â

(i)H

t

â(i)
H

t â(i)t
: (46)

A new data set fz(i)p,qg is then created by applying a
sliding window of size L̄£ M̄ to the vector (45). The

stationary part of R̂(i)p,q is estimated by

R̂(i)n =
1

NLNM

X
p,q

z(i)p,qz
(i)H

p,q : (47)

Step 2.3 Computation of the matrices R̂(i)p,q Finally,

the matrices R̂(i)p,q are computed as the sum of the

structured nonstationary component defined by (44)

and the stationary component (47), i.e.,

R̂(i)p,q =

iX
t=1

j®̂(i)t j2â(i)tp,q â(i)
H

tp,q
+ R̂(i)n : (48)

As the matrices R̂(i)p,q take into account the migration

of the i brightest scatterers (and given the performance

obtained in the clairvoyant case), a range-velocity map

(42) derived with (48) is intended to show i thin peaks

with very low sidelobes, i.e., the i brightest spots, and

to show Nt¡ i peaks with secondary sidelobes.
c) End of the iterations: At the end of the Nt

iterations, the matrices R̂(Nt)p,q take into account the

migration of the Nt scatterers in the scenario, thus we

set (40) to

R̂p,q = R̂
(Nt)
p,q :

If the estimation scheme is efficient enough, the final

range-velocity map derived from these matrices will

show Nt peaks with very low sidelobes.

3) Remarks about the iW-Capon Estimator:

Important remarks can be made concerning the

implementation of the iterative iW-Capon algorithm.

a) Additional step to enhance estimation: To

improve the estimation of (44), a modification

is brought to the iterative process described in

Section IV-B.2. At the ith iteration step 1 (42) and

step 2 (48) of the algorithm are repeated until the

i amplitude estimators converge. More specifically

denote as j the index of the “subiteration” between

(42) and (48) at the ith iteration, and introduce the

i£ 1 vector
®̂(i)j = [®̂

(i)
1,j : : : ®̂

(i)
i,j]

T

that contains the complex amplitude estimates of the

i brightest spots at the jth subiteration. Convergence

is declared when the following practical convergence

criterion is met

k®̂(i)j ¡ ®̂(i)j+1k2 · ²
where ² is the convergence threshold defined by the

radar operator.

b) Determining Nt: While describing the

iW-Capon algorithm, we assume that the number

of scatterers Nt is exactly known. In practical cases,

this number has to be estimated. Though not studied

here this could be done via a generalized Akaike

information criterion as proposed in [15] or by using

an adaptive whiteness criterion to stop the algorithm.

In any event a robustness analysis should then be

conducted to assess the effect of an underestimation

and overestimation of Nt.

c) Sparse scenario: Finally, we stress that

the iW-Capon is based on the assumption that the

Nt brightest spots in the range-velocity domain

correspond to true point-target and are not the result

of sidelobe constructive interferences. Such an

assumption is not made for the W-Capon and the

W-APES estimators.

V. NUMERICAL SIMULATIONS

This section studies the performance of the

proposed wideband spectral estimators W-APES,



TABLE I

Scenario Parameters

Waveform

carrier f0 10 GHz

bandwidth B 1 GHz

PRI Tr 1 ms

pulses M 16

fractional bandwidth B=f0 10%

range resolution ±R = c=(2B) 15 cm

ambiguous velocity va = cfr=(2f0) 15 m/s

Ranges of Interest

LRR segmenta L 16

Internal Receiver Noise

power ¾2 0.01

aMore precisely, L is a preprocessing parameter.

W-Capon, and iW-Capon. Wideband synthetic data

are first considered for sparse-target scenarios exempt

from clutter. Then, the wideband spectral estimators

are applied to experimental data collected from the

PARSAX radar.

A. Synthetic Data Exempt from Clutter

A synthetic scenario exempt from clutter is

considered in this section. We intend to show a simple

example where the proposed wideband estimators can

alleviate the velocity ambiguity of point-targets with a

single pulse contrary to narrowband techniques. After

precising the simulation parameters, the range-velocity

maps obtained from the spectral estimators of interest

are compared.

1) Scenario:

a) Data: The received signal z is generated in

the fast-frequency/slow-time dimension according to

the wideband model (21). The radar considered has a

10% fractional bandwidth with a range resolution of

±R = 15 cm and a PRF of 1 kHz. Two point-targets,

a slow target and a fast target, are introduced in the

scene in two different ways. In the first case aliased

lobes (obtained from narrowband techniques) of both

scatterers do not compete in the range-velocity map

as depicted in Fig. 4(a) and (b). In the second case

aliased lobes do compete as seen in Fig. 5(a) and (b).

For each point-target t the signal-to-noise ratio (SNR)

is defined as

SNRt = 10log10

½ j®tj2
¾2

¾
: (49)

High SNR values are considered here. Useful

parameters for data generation are summed up in

Tables I and II.

b) Processing parameters: Algorithms that require

forming a new data set from z via a sliding window
have the same window size (L̄,M̄) for the simulations.

Note that for the iW-Capon algorithm, the number of

TABLE II

Scenario Parameters: Point-Targets

Target 1 Target 2

power jatj2 1 1

velocity vt (m/s) 7.5 22.5

initial range gate `0,t

½
4a

8¡ 0:8b
8

Doppler fD,t = vt=va 0.5 1.5

range frequency fr,t

½¡0:25a
¡0:45b

¡0:5

range gate walk vtMTr=±R 0.8 2.4

aFirst case scenario: noncompeting targets.
bSecond case scenario: competing targets.

TABLE III

Processing Parameters

APES, Capon, W-APES, W-Capon, iW-Capon

sliding window size (L̄,M̄) =

³
L

4
,
M

4

´
2D-grid ID =

n
¡nva
2
,
1

4M
, : : : ,

nva
2
¡ 1

4M

o
Ir =

n
0,
1

4L
, : : : ,1¡ 1

4L

o
unfolding factor nva = 6

iW-Capon

convergence parameter ²= 10¡3

targets is supposed to be known, i.e., the procedure is

stopped at the Ntth iteration. Useful parameters used

for processing are reported in Table III.

2) Range-Velocity Maps: Range-velocity maps

obtained from the wideband spectral estimators, i.e.,

the W-APES (56), W-Capon (38), and iW-Capon (39),

are compared with two narrowband estimators, namely

the Capon and APES estimators [28, 29]. Note that all

figures show the amplitude modulus.

Amplitude estimates obtained for the first case

scenario are depicted in Fig. 4. We recall that for

this scenario, two noncompeting targets are put

in the scene. The following remarks can be made

accordingly.

Estimation of target positions. From Fig. 4(a) and

(b), it is clear that the positions of the target peaks,

estimated from the Capon and the APES estimators,

are shifted off their true location. Indeed, Capon

and APES estimators coherently integrate the target

under test while ignoring its possible migration. This

leads to a spreading of the target response peak in the

fast-time/slow-frequency. The same phenomenon is

underlined earlier with simple Doppler processing

in Fig. 1(b). Unlike narrowband spectral estimators,

W-Capon, W-APES, and iW-Capon estimators

coherently integrate the target under test while



Fig. 4. Comparison of spectral estimates for synthetic scenario with two noncompeting scatterers (v1,`0,1) = (0:5va,4),

(v2,`0,2) = (1:5va,8). (a) Capon. (b) APES. (c) W-Capon. (d) W-APES. (e) iW-Capon, map after first iteration. (f) iW-Capon, map after

second iteration.



taking into account its migration. It can be observed

in Figs. 4(c), (d), and (f) that the resulting target

positions are estimated correctly.

Estimation of target amplitudes. Capon and APES

do not properly estimate the amplitude of wideband

targets. This is also due to the spreading of the

migrating target response peak. W-Capon, W-APES,

and iW-Capon provide better amplitude estimates. As

in the narrowband case, the W-Capon estimator tends

to underestimate the target amplitude, while W-APES

and iW-Capon restitute a more accurate value.

Width of targets peaks. Peak widths are much

wider for narrowband algorithms as they do not take

range migration into account. As for the wideband

estimators, the W-Capon method provides narrower

peaks than that of the W-APES (the same trend has

been observed for their narrowband counterparts [29]).

Note that the iW-Capon estimator yields thinner peaks

iteration after iteration. More precisely, as expected

at the end of the ith iteration, the i brightest spots are

taken into account into the matrices Rp,q, and their

corresponding sidelobes almost vanish. This tends to

prove that, for an efficient estimation, not only the

migration of the target under test has to be considered

but also the migration of the other scatterers present in

the scenario.

Velocity dealiasing. The APES and the Capon

methods give periodic maxima with respect to the

velocity. Indeed, they are not designed to alleviate

velocity ambiguity so that aliased lobes occur along

the velocity axis. On the contrary our wideband

spectral estimators take advantage of the additional

information about target velocity brought by the

cross-coupling terms in (15). By doing so aliased

lobes are turned into sidelobes. Sidelobe heights of

the W-APES and the W-Capon methods are moderate

for slow moving targets, but they remain high for

fast targets. The W-Capon has lower sidelobes than

the W-APES. As for the iW-Capon estimator, the

sidelobes vanish iteration after iteration, which is a

very appealing property. Numerical values for the

relative height of the first sidelobe observed for the

slowest target are, respectively, given for the W-APES,

W-Capon, and iW-Capon by ¼¡8:5 dB, ¼¡14 dB,
none. For comparison purposes the relative level of

the first sidelobe with a coherent integration algorithm

would be equal to f0=(BM)¼¡4 dB [18].
Amplitude estimates obtained for the second case

scenario are depicted in Fig. 5. We recall that this

scenario is defined by two competing targets. The

following remarks can be made accordingly.

1) Previous observations concerning target

location still hold for this scenario.

2) Peak widths and sidelobes increase for each

algorithm. Also, the average level of the scatterer-free

region is slightly higher than previously observed in

Fig. 4.

3) Peak heights are strongly affected for the

narrowband estimators as well as for the W-Capon

and the W-APES techniques, as seen in Figs. 5(c)

and (d). For instance, the peak of the slowest target

is clearly underestimated. This is certainly the result

of destructive interferences between the mainlobe of

the slow target and the sidelobes of the fast target.

4) On the contrary, after one iteration of the

iW-Capon procedure (see Fig. 5(e)), the sidelobes

of the first detected target, i.e., the fast one, do not

compete much with the mainlobe of the second target.

At the end of the algorithm (Fig. 5(f)), the sidelobes

are partly suppressed, and the initial amplitudes of the

targets are still valid.

By observing the range-velocity maps from two

simple scenarios, we show that our wideband spectral

estimators mitigate velocity ambiguity as compared

with narrowband techniques. However, for the

W-Capon and the W-APES techniques, sidelobe levels

remain high for fast targets and can lead to poor

amplitude estimation. The iW-Capon method almost

entirely removes the sidelobes with few remaining

residues in the presence of competing targets.

REMARK 2 The W-Capon and W-APES estimators

do not strictly assume a sparse-target scenario. They

have been also tested in the presence of diffuse clutter.

However, their performance drastically decreases in

the case of a large spectral bandwidth (with respect

to the slow time). Hence, in the following they are

applied only after a clutter prefiltering operation as for

the iW-Capon estimator.

B. PARSAX Data

This section applies the wideband algorithms

to experimental data collected in November, 2010

at TU-Delft. Though the radar system has a lower

fractional bandwidth than thought in the previous

sections (about 3 times less), the range-walk of targets

still occurs during the CPI and can be of interest for

our wideband estimators. To obtain equivalent relative

sidelobe levels as observed in the previous section, the

CPI has been extended to M = 64 pulses.

1) PARSAX Radar: The polarimetric agile

radar in S- and X-band (PARSAX) is an on-going

project led by the International Research Centre for

Telecommunications and Radar (IRCTR) at TU-Delft.

The system is very flexible with regards to the

generated waveform and the preprocessing algorithms

performed by the receiver [34]. The data collected

in November, 2010 were obtained by transmitting a

linearly-frequency-modulated continuous waveform

(LFMCW) with a 3% fractional bandwidth and a

1.5 m range resolution. A deramping operation was

chosen to range-matched filter the received signal.

The data of interest correspond to a surface-to-

surface scenario. Indeed, the PARSAX radar system



Fig. 5. Comparison of spectral estimates for synthetic scenario with two competing scatterers (v1,`0,1) = (0:5va,8¡ 0:8),
(v2,`0,2) = (1:5va,8). (a) Capon. (b) APES. (c) W-Capon. (d) W-APES. (e) iW-Capon, map after first iteration. (f) iW-Capon, map after

second iteration.



TABLE IV

PARSAX Scenario Parameters

Waveform

carrier f0 3.315 GHz

bandwidth B 100 MHz

PRI Tr 1 ms

pulses M 64

fractional bandwidth B=f0 3%

range resolution ±R = c=(2B) 1.5 m

ambiguous velocity va = cfr=(2f0) 45.25 m/s

Ranges of Interest

LRR segmenta L 16

aMore precisely, L is a preprocessing parameter.

is located on the rooftop of a 100 m-high building

at TU-Delft. The transmitter and receiver are two

parabolic reflectors that can be seen as collocated.

During the experiment the antenna beam was

pointed toward the Rotterdam-Den Haag freeway

during a heavy-traffic time. The targets were thus

noncooperative vehicles on the freeway and were

normally limited to a speed of 100 km/h (¼ 28 m/s).
The mainlobe antenna intercepted the freeway at a

distance of about 1.8 km.

The parameters describing the scenario are

summarized in Table IV. Accordingly, it is shown in

[24] that the wideband data model (15) derived here

for pulse waveform still holds for LFMCW, provided

that a correction factor is applied to the parameter

¹ (17) which is done in what follows. Note that the

polarimetric capability of the PARSAX system has not

been exploited in this study. Only the HH-polarized

signals have been used.

2) Clutter Filtering: Our wideband spectral

estimators are designed for sparse-target scenarios

exempt from diffuse clutter. Therefore, the PARSAX

experimental data are first filtered to suppress clutter.

More precisely the data z are projected onto the

subspace orthogonal to the clutter. To estimate the

clutter subspace, an ad-hoc method is implemented.

The clutter is assumed to have a centered Gaussian

spectrum with variance ¾2f . Then, assuming that the

clutter is decorrelated from subband to subband, the

fast-frequency/slow-time clutter covariance matrix can

be built as
Rc = L(¡c− IL) (50)

where the (m1,m2)th element of the slow-time

covariance matrix is given by

[¡c]m1,m2 / exp
Ã
¡4¼

2¾2f[(m1¡m2)Tr]2
2

!
:

The clutter subspace is then estimated via the

eigenvectors associated with the highest eigenvalues

of (50). The resulting filter response is depicted in

Fig. 6. The notches at the first blind velocities §va are

Fig. 6. Adapted pattern of ad-hoc clutter filter with ¾f = 20 Hz.

somewhat less pronounced than the main notch at the

null-velocity. Hence, it may prevent from detecting

targets at blind-velocities. However, as seen in the

following, it allows one to enhance the estimation of

migrating targets outside the blind velocities. Note

that we have observed that, with higher fractional

bandwidth, the notches at blind velocities become less

deep, which might allow targets at blind velocities to

be detected.

3) Range-Velocity Maps: The range-Doppler maps

are depicted in Fig. 7 for the coherent integration, the

W-Capon, the W-APES, and the iW-Capon algorithms.

The processing parameters are the same as those

described in Table III except for the unfolding factor

that is set to nva = 3. The number of iterations is set to

3 for the iW-Capon procedure. The following remarks

can be made accordingly.

Clutter filtering. From the maps in Fig. 7, it

appears that most clutter components have been

removed by the ad-hoc filter (Fig. 6). Although, few

residues seem to remain, especially around the range

bin 6 (see Fig. 7(d)). Note that the proposed filter has

certainly removed not only the ground clutter but also

some slow targets as well as targets in blind velocities.

Velocity dealiasing. Trends observed with

synthetic data are recovered here. The sidelobes

observed for a coherent integration algorithm greatly

pollute the range-velocity maps. The maps become

cleaner and cleaner with W-Capon, W-APES,

and iW-Capon. Note that, contrary to narrowband

techniques, the wideband estimators of interest here

can determine the true target velocity from one burst

with a single low PRF.

Possible observed scenario. We believe that the

iW-Capon algorithm is the most reliable processing

in the sparse-target environment, and we, thus, infer

from it (via Fig. 7(d)) the following possible target



Fig. 7. Comparison of spectral estimates. PARSAX experimental data. (a) Coherent integration. (b) W-Capon. (c) W-APES.

(d) iW-Capon.

scenario

j®1j2 = 102 dB, v1 =¡24 m/s, `0,1 = 8:75

(51a)

j®2j2 = 99:8 dB, v2 =¡21:6 m/s, `0,2 = 2:25

(51b)

j®3j2 = 99:6 dB, v3 =¡21:7 m/s, `0,3 = 0:75:

(51c)

Note that the received signals have not been

normalized after the fast Fourier transform (FFT)

operation performed during the deramping processing,

which explains the high amplitude level.

4) Range-Velocity Maps for Quasi-Equivalent

Synthetic Scenario: To validate our interpretation

(51) of the experimental scenario, a quasi-equivalent

synthetic data exempt from clutter has been

reconstructed according to (21). Also, the thermal

noise level has been approximately set such that

SNR1 ¼ 0 dB. The range-velocity maps obtained
with this synthetic scenario are depicted in Fig. 8.

The maps are very similar to those obtained with

the experimental data. Moreover, as there are no

clutter residues, the reconstructed maps are “cleaner.”

The advantage of the iW-Capon estimator compared

with the W-Capon estimator is more obvious with

the experimental data. It is of interest to note that

the level of main and sidelobe peaks are recovered

for the two close-range targets, i.e., t= 2 and t= 3.

However, the sidelobe levels of the brightest target

t= 1 are much higher with the experimental data than

with the synthetic scenario. For instance, it can be

clearly seen from Figs. 7(d) and 8(d) that with the

experimental data a sidelobe is observed at v1 +2va,

while it does not even appear for synthetic data. A



Fig. 8. Comparison of spectral estimates. PARSAX synthetic data. (a) Coherent integration. (b) W-Capon. (c) W-APES. (d) iW-Capon.

possible explanation is that the brightest target may

be, in fact, the result of several close-range scatterers.

This observation opens a challenging question that

will be investigated in future work: what is the

range-velocity resolution of our proposed wideband

spectral estimators?

VI. CONCLUSION

Wideband radar is a key concept for designing

future radar systems as it may provide high

performance for detection of small targets in hostile

environments. In this paper we have focused our

attention mostly on the problem of the range

migration that occurs for fast moving targets.

More specifically, we have presented an adequate

wideband signal model for pulse waveform that

takes into account linear migration. Accordingly,

we have proposed and studied the performance of

three new spectral estimators: W-APES, W-Capon,

and iW-Capon. These estimators outperform the

narrowband estimators as well as a simple coherent

summation. Indeed, they take advantage of the range

migration, thereby mitigating velocity sidelobes

and providing an enhanced discrimination between

migrating point-targets. The performance of W-APES,

W-Capon, and iW-Capon has been assessed on

synthetic and experimental data collected from the

PARSAX system. Wideband spectral estimators

have been applied on experimental data after a

preprocessing step for clutter filtering. Future work

includes the refinement of the preprocessing filtering

as well as a thorough study on the range-velocity

resolution of the proposed wideband estimators.

APPENDIX

It is shown in this Appendix that problem (36)

does not have a priori a closed-form expression.

In order to derive ®̂wapes (36), the log-likelihood

function is first differentiated with respect to Q and



equated to zero, which yields

Q=
1

NMNL

X
p,q

(zp,q¡®ap,q)(zp,q¡®ap,q)H:

After replacing this expression of Q in the

log-likelihood, the ML estimator of ® is shown to

minimize the following cost function

F(®) =

¯̄̄̄
¯ 1

NMNL

X
p,q

(zp,q¡®ap,q)(zp,q¡®ap,q)H
¯̄̄̄
¯ :

The right hand term of this equation can be written

jR̂¡®DāZ̄H ¡®¤Z̄DHā + j®j2DāfB−CgDHā j (52)

where R̂ and Z̄ are L̄M̄ £ L̄M̄ matrices defined by

R̂=
1

NMNL

X
p,q

zp,qz
H
p,q

and

Z̄=
1

NMNL

X
p,q

zp,q(bp− cq)H exp
£
¡j(p!r + q!D +pq¹!D)

¤
while B and C are matrices of size M̄ £ M̄ and L̄£ L̄,
respectively, given by

B=
1

NL

NL¡1X
p=0

bpb
H
p and C=

1

NM

NM¡1X
q=0

cqc
H
q :

(53)

Note also that in (52), we have used the fact that

ā¯fbp− cqg=Dāfbp− cqg
where Dā = diagfāg denotes the diagonal matrix
whose main diagonal is the vector ā. In order to

go further with (52), we consider the following

eigendecomposition

B−C=U¤UH (54)

where ¤= diagf¸1, : : : ,¸r,0, : : : ,0g is the diagonal
matrix of eigenvalues arranged in descending

order, r denotes the rank of the matrix B−C, and
U= [u1 : : :uM̄L̄] is a matrix whose columns are the

corresponding eigenvectors. The rank r can vary

drastically with respect to the frequency of interest

(!D,!r). To simplify (52) it is interesting to note that

for any pair (p,q), the vector zp,q is in the range of

B−C, hence
(I
M̄L̄
¡UrUHr )Z̄H = 0 (55)

where Ur = [u1 : : :ur] and where I» denotes the

identity matrix of size »£ ». By using (55) the cost
function can be rewritten as

F(®) = jR̂¡®DāUrUHr Z̄H¡®¤Z̄UrUHr DHā +j®j2DāUr¤rUHr DHā j
= jR̂¡ Z̄Ur¤¡1r UHr Z̄H +(®DāUr¤1=2r ¡ Z̄Ur¤¡1=2r )

£ (®DāUr¤1=2r ¡ Z̄Ur¤¡1=2r )H j:

By denoting Q̂= R̂¡ Z̄Ur¤¡1r UHr Z̄H , and using that
jI+ABj= jI+BAj, one finally as

F(®) = jIr+(®DāUr¤1=2r ¡ Z̄Ur¤¡1=2r )H

£ Q̂¡1(®DāUr¤1=2r ¡ Z̄Ur¤¡1=2r )j:
Finally, the ML estimator of the complex amplitude ®

is given by

®̂wapes = argmin
®
jIr+(®DāUr¤1=2r ¡ Z̄Ur¤¡1=2r )H

£ Q̂¡1(®DāUr¤1=2r ¡ Z̄Ur¤¡1=2r )j
(56)

where ¤r = diagf¸1, : : : ,¸rg, and
Q̂= R̂¡ Z̄Ur¤¡1r UHr Z̄H: (57)

To our knowledge the problem of minimization

(56) does not have a closed-form solution unless

r = 1, and in this case, the problem reduces to the

APES estimator [29]. Otherwise, when r > 1, the cost

function (56) is similar to other cost functions that

have been encountered in the literature [37, 38].
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