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Bit error rate (BER) minimization and SNR-gap maximization, two robustness optimization problems, are solved, under average
power and bitrate constraints, according to the waterfilling policy. Under peak power constraint the solutions differ and this
paper gives bit-loading solutions of both robustness optimization problems over independent parallel channels. The study is
based on analytical approach, using generalized Lagrangian relaxation tool, and on greedy-type algorithm approach. Tight BER
expressions are used for square and rectangular quadrature amplitude modulations. Integer bit solution of analytical continuous
bitrates is performed with a new generalized secant method. The asymptotic convergence of both robustness optimizations is
proved for both analytical and algorithmic approaches. We also prove that, in the conventional margin maximization problem,
the equivalence between SNR-gap maximization and power minimization does not hold with peak-power limitation. Based
on a defined dissimilarity measure, bit-loading solutions are compared over Rayleigh fading channel for multicarrier systems.
Simulation results confirm the asymptotic convergence of both resource allocation policies. In nonasymptotic regime the resource
allocation policies can be interchanged depending on the robustness measure and on the operating point of the communication
system. The low computational effort leads to a good trade-off between performance and complexity.

1. Introduction

In transmitter design, a problem often encountered is
resource allocation among multiple independent parallel
channels. The resource can be the power, the bits or the
data, and the number of channels. The resource allocation
policies are performed under constraints and assumptions,
and the independent parallel channels can be encountered in
multitone transmission.

Independent parallel channels result from orthogonal
design applied in time, frequency, or spatial domains [1].
They can either be obtained naturally or in a situation
where the transmit and receive strategies are to orthogonalize
multiple waveforms. The orthogonal design can also be
applied in many communication scenarios when there are
multiple transmit and receive dimensions. Orthogonal
frequency-division multiplexing (OFDM) and digital multi-
tone (DMT) are two successful commercial applications for

wireless and wireline communications with orthogonality in
the frequency domain.

To perform resource allocation, relations between vari-
ous resources are needed, and one is the channel capacity.
This capacity of n-independent parallel Gaussian channels is
the well-known sum of the capacity of each channel

C =
n
∑

i=1

Ci =
n
∑

i=1

log2(1 + snri). (1)

This relation, which holds for memoryless channels, links the
supremum bitrate Ci, here expressed in bit per two dimen-
sions, to the signal to noise ratio, snri, experienced by each
channel or subchannel i. Any reliable and implementable
system must transmit at a bitrate ri below capacity Ci over
each subchannel, and then the margin, or SNR-gap, γi is
introduced to analyze such systems [2, 3]

γi =
2Ci − 1

2ri − 1
. (2)
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This SNR-gap is a convenient mechanism for analyzing
systems that transmit below capacity or without Gaussian
input, and

ri = log2

(

1 +
snri
γi

)

, (3)

with ri the bitrate in bits per two-dimensional symbol (bits
per second per subchannel) which is also the number of bits
per constellation symbol.

Resource allocation is performed using loading algo-
rithms, and diverse criteria can be invoked to decide which
portion of the available resource is allocated to each of the
subchannels. From an information theory point of view,
the criterion is the mutual information, and the optimal
resource allocation under average power constraint was
first devised in [4] for Gaussian inputs and later for non-
Gaussian inputs [5]. Since the performance measure is the
capacity, the SNR-gap in (3) is γi = 1 for all i. In other
cases, γi is higher than 1, and (3) has been exploited into
many optimal and suboptimal resource allocation policies.
In fact, resource allocation is a constraint optimization
problem, and generally two cases are of practical interest:
rate maximization (RM) and margin maximization (MM),
where the objective is the maximization of the data or
bitrate, and the maximization of the system margin (or
power minimization in practice), respectively [6]. The MM
problem gathers all non RM problems including power
minimization, margin maximization (in its strict sense),
and other measures such as error probabilities or goodput.
(In this paper MM abbreviation is related to the general
family of non-RM problems and not only to the margin
maximization problem in its strict sense. The expanded
form is reserved for the margin maximization in its strict
sense.) It is not necessary to study all the resource allocation
strategies, and equivalence or duality can be found. Families
of approaches are defined, and unified processes have been
used [7–10]. The loading algorithms are also split in to
two families. The first is based on greedy-type approach to
iteratively distribute the discrete resources [11], and the sec-
ond uses Lagrangian relaxation to solve continuous resource
adaptation [12]. Both approaches have been compared in
terms of performance and complexity [7, 12–14]. All these
adaptive resource allocations are possible when channel state
information (CSI) is known at both transmitter and receiver
sides. This CSI can be perfect or imperfect, and full or partial.
The effects of channel estimation error and feedback delay on
the performance of adaptive modulated systems can also be
considered in the resource allocation process [15–17].

In this paper we shall focus henceforth on MM problems,
and the main contributions are as follows:

(i) the new resource allocation algorithm and

(ii) the comparison of the different resource allocation
strategies.

It is assumed that the channel estimation is perfect, and
feedback CSI delay and overhead are negligible. The con-
sidered peak-power constraint, instead of the conventional
average power constraint or sum power constraint, results

from power mask limitation and has been taken into
account in resource allocation problem [13, 18–20]. With
this peak power constraint, each channel must satisfy a power
constraint. Note that the sum power constraint is historically
the first considered constraint [4]. Bitrate constraint comes
from communication applications or service requirements,
where different flows can exist, but one of them is chosen at
the beginning of the communication. In this configuration,
the remaining parameter to optimize is then the SNR-gap
γi which is also related to the error probability of the
communication system.

Two similar problems of MM have the same objective,
that is, to maximize the system robustness. What we call
robustness in this paper is the capability of a system to main-
tain acceptable performance with unforeseen disturbances.

The first measure of robustness is the SNR gap, or system
margin, and its maximization ensures protection against
unforeseen channel impairments or noise. The system
margin maximization is the maximization of the minimal
SNR-gap γi in (3) over the n subchannels. In that case the
conventional equivalence between margin maximization and
power minimization in MM problems is not generally true.
In this paper we show that this equivalence can nevertheless
be obtained in particular configurations.

The second robustness measure is the bit error rate (BER)
and its minimization can reduce the packet error rate and
the data retransmissions. In transmitter design, the BER
minimization can be realized using uniform bit-loading and
adaptive precoding [21, 22]. Analytical studies have been
performed with peak-BER or average BER (computed as
arithmetic mean) approaches [15, 17]. With nonuniform bit
loading, the average BER must be computed as weighted
arithmetic mean, and the resource allocation has been
performed using a greedy-type algorithm [23]. The first
main contribution of this paper is the analytical solution
of the resource allocation problem in the case of weighted
arithmetic mean BER minimization.

To perform the analytical study, based on a generalized
Lagrangian relaxation tool, we develop a new method for
finding roots of functions. This method generalizes the
secant method to better fit the function-depending weight
and to speed up the search of the roots. Both robustness
polices are compared using a new measure. This measure
evaluates the difference of the bit distributions instead of
the bitrates. We also prove that both robustness policies
provide the same bit distribution in asymptotic regime,
which is defined for high SNR and high bitrate regimes,
and this is the second main contribution in this paper. The
proof is given in the case of unconstrained modulations
(i.e., continuous bitrates and analytical solution) and also
for QAM constellations and greedy-type algorithms. The
convergence is exemplified by simulation in multicarrier
communications systems.

The organization of the paper is as follows. In Section 2,
the quantities to be used throughout the paper are intro-
duced, and the robustness optimization problem is formu-
lated in a general way for both system margin maximization
and BER minimization. The equivalences between margin
maximization and power minimization are worked out.
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Section 3 presents the considered expressions of accurate
BER, the new measure of the bit distribution differences,
and the new search method of roots of functions. The
solutions of formulated problems are given in Section 4 in
the form of an optimum resource allocation policy based
on greedy-type algorithms. The conditions of equivalence of
both margin maximization and BER minimization are given
in this section. Section 5 presents the analytical solution
and both greedy-type and analytical methods are compared
in Section 6. This Section 6 exemplifies the application
of robustness optimization to multicarrier communication
systems. Finally, the paper concludes in Section 7 with the
proofs of several results relegated to the appendices.

Notation. The bitrates {ri}ni=1 are defined as a number
of bits per two dimensions and they are simply given by a
number of bits (undertone per constellation).

2. Problem Formulation

Consider n parallel subchannels. On the i-th subchannel, the
input-output relationship is

Yi = hiSi + Wi, (4)

where Si is the transmitted symbol, Yi is the received one, and
hi the complex scalar channel gain. The complex Gaussian
noise Wi is a proper complex random variable with zero-
mean and variance equal to σ2

Wi
.

The conventional average power constraint is

1

n

n
∑

i=1

E
[

|Si|2
]

≤ P, (5)

whereas the peak-power constraint, or power spectrum
density constraint, considered in this paper is

E
[

|Si|2
]

≤ P, i = 1, . . . ,n. (6)

It is convenient to use normalized unit-power symbol
{Xi}ni=1 such that

Si =
√

piPXi, (7)

which leads to the peak-power constraint

pi ≤ 1, i = 1, . . . ,n. (8)

It is also convenient to introduce two other variables. The
first one is the conventional SNR

snri = |hi|2pi
P

σ2
Wi

(9)

and the second is called power spectrum density noise ratio
(PSDNR)

psdnr = 1

n

n
∑

i=1

|hi|2
P

σ2
Wi

, (10)

which is the mean signal to noise ratio over the n subchannels
if and only if pi = 1 for all i. This PSDNR is the ratio between

the power mask at the receiver side (the transmitted power
mask through the channel) and the power spectrum density
of the noise. The system performance will be given according
to this parameter to point out the ability of a system to exploit
the available power under peak-power constraint.

Using the previous notations, (3) becomes

ri = log2

(

1 +
|hi|2piP
γiσ

2
Wi

)

. (11)

With pi/γi = 1 for all i, ri is the subchannel capacity under
power constraint P. With unconstrained modulations, ri
is defined in R, but constrained modulations are used in
practice and ri takes a finite number of nonnegative values.
Noninteger number of bits per symbol can also be used
with fractional bit constellations [24, 25]. In this paper,
modulations defined by discrete points are used with integer
number of bits per symbol. Typically, ri ∈ {0,β, 2β, . . . , rmax},
where β is the granularity in bits and rmax is the number
of bits in the richest available constellation. The peak-power
and bitrate constraints are then

pi ≤ 1 ∀i,
n
∑

i=1

ri = R, ri ∈
{

0,β, 2β, . . . , rmax

}

∀i.

(12)

Obviously, the exploitation of the available power leads to
pi = 1 for all i and the constraint is simplified as

n
∑

i=1

ri = R, ri ∈
{

0,β, 2β, . . . , rmax

}

∀i. (13)

With peak-power and bitrate constraints, the resource
allocation strategy is then to use all available power and to
optimize the robustness.

The problem we pose is to determine the optimal bitrate
allocation {r∗i }ni=1 that maximizes a robustness measure, or
inversely minimizes a frailness measure, under constraints
given in (13). In its general form, this problem can be written
as

[

r∗1 , . . . , r∗n
]

= arg min
∑n

i=1 ri=R
ri∈{0,β,2β,...,rmax}

φ
(

{ri}ni=1

)

,
(14)

where φ(·) is the frailness measure. In this paper, this
measure is given by the SNR gap or the BER. In addition
to the bitrate allocation, the receiver is presumed to have
knowledge of the magnitude and phase of the channel gain
{hi}ni=1, whereas the transmitter needs only to know the
magnitude {|hi|}ni=1. The objective is to find the data vector
[r∗1 , . . . , r∗n ] which is the final relevant information for the
transmitter. The resource allocation can then be computed
on the receiver side to reduce the feedback data rate from
n real numbers to n finite integer numbers. Furthermore,
the integer nature of the data rates allows a full CSI at the
transmitter, which is not possible with real numbers.

2.1. System Margin Maximization. The SNR-gap γi of the
subchannel i is (3)

γi =
snri

2ri − 1
. (15)
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With reliable communications, γi is higher than 1 for all
subchannels. Let the system margin, or system SNR-gap, be
the minimal value of the SNR gap in each subchannel

γ = min
i

γi. (16)

Let γinit be the initial system margin of one communication
system ensuring a given QoS. Let γ be the optimized system
margin of this system. Then, the system margin improve-
ment ensures system protection in unforeseen channel
impairment or noise, for example, impulse noise; bitrate and
system performance targets are always reached for an unfore-
seen SNR reduction of γ/γinit over all subchannels. This
robustness optimization does not depend on constellation
and channel-coding types. The system margin γ is defined
and optimized without knowledge of used constellations and
coding, and the proposed robustness optimization works for
any coding and modulation scheme.

The objective is the maximization of the system margin
which is equivalent to the minimization of γ−1. We note γi(ri)
the function that associates ri to γi. The function φ(·) in (14)
is then given by

φ
(

{ri}ni=1

)

= max
i

1

γi(ri)
, (17)

[

r∗1 , . . . , r∗n
]

= arg min
∑n

i=1 ri=R
ri∈{0,β,2β,··· ,rmax}

max
i

γ−1
i .

(18)

This problem is the inverse problem of bitrate maximization
under peak-power and SNR-gap constraints. The solution of
the bitrate maximization problem is obvious under the said
constraints and given by

r∗i = β

⌊

1

β
log2

(

1 +
snri
γi

)⌋

∀i. (19)

Following the conventional SNR-gap approximation [2],
the symbol error rate (SER) of QAM depending on the SNR-
gap is constellation size independent with

seri(ri) = 2 erfc

⎛

⎝

√

3

2
γi

⎞

⎠ ∀ri, (20)

where the complementary error function is usually defined
as

erfc(x) = 2√
π

∫∞

x
e−t

2

dt. (21)

The system margin maximization is then equivalent to the
peak-SER minimization in high-SNR regime. Note that, with
(16), the system margin maximization can also be called
a trough-SNR-gap maximization, and it is strongly related
to the peak-power minimization. Whereas the bit-loading
solution is the same for power minimization and margin
maximization with sum-margin or sum-power constraints,
instead of peak constraints, the following lemma gives
sufficient conditions for equivalence in the case of peak
constraints.

Lemma 1. The bit allocation that maximizes the system

margin under peak-power constraint {pmargin
i }ni=1 minimizes

the peak-power under SNR-gap constraint {γpower
i }ni=1 if p

margin
i

γ
power
i = α for all i.

Proof. It is straightforward using (11) and (18). Both
problems have the same expression and therefore the same
solution.

This lemma provides a sufficient but not necessary
condition for the equivalence of solutions, and it says that
if the power and the SNR-gap constraints have proportional
distributions for margin maximization and peak-power
minimization problems, respectively, then both problems
have the same optimal bitrate allocation. In the general
case, we cannot conclude that both problems have the same
solution.

2.2. BER Minimization. In communication systems, the
error rate of the transmitted bits is a conventional robustness
measure. By definition, the BER is the ratio between the
number of wrong bits and the number of transmitted bits.
With a multidimensional system, there exists several BER
expressions [15, 23]. Let the BER be evaluated over the
transmission of m multidimensional symbols. (We suppose
that m is high enough to respect the ergodic condition and
to make possible use of error probability.) In our case,
the multidimensional symbols are the symbols sent over n
subchannels. Let ei be the number of erroneous bits received
over subchannel i during the transmission. The BER is then
given as

ber =
∑n

i=1 ei
m
∑n

i=1 ri
=
∑n

i=1 ri(ei/mri)
∑n

i=1 ri
. (22)

The BER over subchannel i is ei/mri, and the BER of n
subchannels is then

ber
(

{ri}ni=1

)

=
∑n

i=1 riberi(ri)

R
(23)

with beri(ri) the function that associates the BER of channel
i with the bitrate ri. The BER of multiple variable bitrate ri
is then not the arithmetic mean of BER but is the weighted
mean BER. Weighted mean BER and arithmetic mean BER
are equal if ri = r j for all i, j or if beri = 0 for all i. As
there exists beri /= 0, then weighted mean BER and arithmetic
mean BER are equal if and only if ri = r j for all i, j. Note that
if the number m of transmitted multidimensional symbols
depends on the subchannel i, (23) does not hold anymore.
These obvious results on mean measures are not taken into
account, and mean BER is erroneously used instead of mean
weighted BER [15, 17].

The function φ(·) in (14) is then given by

φ
(

{ri}ni=1

)

= 1

R

n
∑

i=1

riberi(ri), (24)

[

r∗1 , . . . , r∗n
]

= arg min
∑n

i=1 ri=R
ri∈{0,β,2β,...,rmax}

ber
(

{ri}ni=1

)

.
(25)
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To simplify the notations, let ber(R) be the BER of
the system. In high SNR regime with Gray mapping,
riberi(ri) = seri(ri), and then weighted mean BER can
be approximated by arithmetic mean SER divided by the
number of transmitted bits.

Contrary to system margin maximization, the BER
minimization needs the knowledge of constellation and
coding schemes, and it is based on accurate expressions of
BER functions. In this paper, the used constellations are
QAM, and the optimization is performed without a channel
coding scheme. When dealing with practical coded systems,
the ultimate measure is the coded BER and not the uncoded
BER. However, the coded BER is strongly related to the
uncoded BER. It is then generally sufficient to focus on
the uncoded BER when optimizing the uncoded part of a
communication system [26].

3. Interludes

Before solving the optimization problem, the BER approx-
imation of QAM is presented. This approximation plays a
chief role in BER minimization, and a good approximation
is therefore needed. Since this paper deals with bitrate
allocation, a measure of difference in the bitrate distribution
is proposed and presented in this section. This section also
presents a new research method of roots of functions. This
method generalizes the secant method and converges faster
than the secant one.

3.1. BER Approximation. Conventionally, the BER approxi-
mation of square QAM has been performed by either calcu-
lating the symbol error probability or by simply estimating
it using lower and upper bounds [27]. This conventional
approximation tends to deviate from the exact values when
the SNR is low and cannot be applied for rectangular QAM.
Exact and general closed-form expressions are developed
in [28] for arbitrary one and two-dimensional amplitude
modulation schemes.

An approximate BER expression for QAM can be
obtained by neglecting the higher-order terms in the exact
closed-form expression [28].

beri ≃
1

ri

(

2− 1

Ii
− 1

Ji

)

erfc

(√

3

I2
i + J2

i − 2
snri

)

(26)

with Ii = 2⌊ri/2⌋, Ji = 2⌈ri/2⌉, and ri = log2(Ii·Ji). By symmetry,
Ii and Ji can be inverted. The BER can also be expressed using
the SNR-gap γi. Using (3) and (26), the BER is written as

beri ≃
1

ri

(

2− 1

Ii
− 1

Ji

)

erfc

(√

3(IiJi − 1)

I2
i + J2

i − 2
γi

)

. (27)

These two approximations allow the extension of the
beri(ri) function from N to R+ which is useful for analytical
studies. Figure 1 gives the theoretical BER curves and the
approximated ones from the binary phase shift keying
(BPSK) to the 32768-QAM. For BER lower than 5 · 10−2, the
relative error is lower than 1% for all modulations.

0 10 20 30 40 50 60

SNR (dB)

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

B
E

R

Approximation

Exact

BPSK

215QAM

Figure 1: Exact BER curves and approximations (26).

3.2. Dissimilar Resource Allocation Measure. Two resource
allocations can have the same bitrate, but this does not mean
that the bitrates per subchannel are the same. To measure the
difference in the bit distribution between different resource
allocation strategies, we need to evaluate the dissimilarity.
This dissimilarity measure must verify the following prop-
erties: (1) if two resource allocations lead to the same bit
distribution, then the measure of dissimilarity must be null,
whereas (2) if two resource allocations lead to two completely
different bit distributions in loaded subchannels, then the
measure of dissimilarity must be equal to one, and (3)
the measure is symmetric; that is, the dissimilarity between
the resource allocations X and Y must be the same as
the dissimilarity between the resource allocations Y and X .
We choose that the empty subchannels do not impact the
measure.

Definition 2. The dissimilarity measure between the resource
allocations X and Y is

µ(X ,Y) =
∑n

i=1 δ(ri(X)− ri(Y))

max j∈{X ,Y}
∑n

i=1 δ
(

ri
(

j
)) , (28)

where δ(x) = 1 if x /= 0 else δ(x) = 0.

This dissimilarity has the following properties.

Property 1. µ(X ,Y) = 0 iff ri(X) = ri(Y) for all i.

Property 2. µ(X ,Y) = 1 iff ri(X) /= ri(Y) or ri(X) = ri(Y) =
0 for all i.

Property 3. µ(X ,Y) = µ(Y ,X).

Property 4. If µ(X ,Y) = 0, then, for all resource allocation Z,
µ(X ,Z) = µ(Y ,Z).

All these properties are direct consequences of
Definition 2. For a null dissimilarity, µ(X ,Y) = 0, all
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the subchannels transmit the same number of bits, that is,
ri(X) = ri(Y) for all i. For a full dissimilarity, µ(X ,Y) = 1,
all the nonempty subchannels of both resource allocations
X and Y transmit a different number of bits, that is, for all i
such as ri(X) /= 0 and ri(Y) /= 0, then ri(X) /= ri(Y). It is
obvious that the measure is symmetric µ(X ,Y) = µ(Y ,X).
If two resource allocations have a null dissimilarity
µ(X ,Y) = 0, then they are identical and for any resource
allocation Z µ(X ,Z) = µ(Y ,Z). The converse of this last
property is not true. Note that the dissimilarity is not defined
for two empty resource allocations.

For example, let n = 4 and [r1(X), . . . , r4(X)] = [4 3 3 0].
If [r1(Y), . . . , r4(Y)] = [3 2 2 2] or [r1(Y), . . . , r4(Y)] =

[5 5 0 0], then µ(X ,Y) = 1. If [r1(Y), . . . , r4(Y)] = [4 3 2 1],
then µ(X ,Y) = 1/2. The measure µ(X ,Y) is null if and
only if [r1(Y), . . . , r4(Y)] = [4 3 3 0]. The dissimilarity does
not evaluate the total bitrate differences but only the bit
distribution differences; the contribution of two bitrates
ri(X) and r j(Y) in the dissimilarity measure is independent
of the bitrate difference |ri(X)− r j(Y)|.

3.3. Generalized Secant Method. There are many numerical
methods for finding roots of functions. We propose a new
method, called the generalized secant method, that is, based
on the secant method. This new method better fits the
function-depending weight than secant method do and then
improves the speed of the convergence. Before explaining this
new method, a brief overview of the secant method is given.

In our case, the objective function f (x) is monotonous,
nondifferentiable and computable over x ∈ [x1, x2] with
f (x1)/| f (x1)| = − f (x2)/| f (x2)|. The secant method is as
follows for an increasing function f (x):

(1) i = 0, y0 = f (x1);

(2) x0 = (x2 f (x1) − x1 f (x2))/( f (x1) − f (x2)), yi+1 =
f (x0);

(3) if |yi+1 − yi| ≤ ǫ, then x0 is the root of f (x), else
{

yi+1<0 then x1=x0

yi+1>0 then x2=x0

}

, i → i + 1 and go to step 2.

The objective of the secant method is to approximate f (x)
by a linear function gi(x) = aix + bi at each iteration i, with
gi(x1) = f (x1) and gi(x2) = f (x2), and to set x0 as the root of
gi(x). The search for the root of f (x) is completed when the
desired precision ǫ is reached. The precision is given for yi,
but it can also be given for xi.

As the function f (x) is computable, it can be plotted and
an a posteriori simple algebraic or elementary transcendental
invertible function over [x1, x2] can be used to better fit
the function f (x). The a posteriori information is then used
to improve the search for the root. The function f (x) is
iteratively approximated by aih(x) + bi instead of aix + bi,
where h(x) is the invertible function. This method is then
given as follows for an increasing function f (x):

(1) i = 0, y0 = f (x1);

(2) x0 = h−1((x2 f (x1)−x1 f (x2))/( f (x1)− f (x2))), yi+1 =
f (x0);

(3) if |yi+1 − yi| ≤ ǫ, then x0 is the root of f (x), else
{

yi+1<0 then x1=x0

yi+1>0 then x2=x0

}

, i → i + 1 and go to step 2.

Compared to the secant method, only step 2 differs and
the computation of x0 is performed taking into account the
approximated shape h(x) of the function f (x).

This generalized secant method is used in Section 5 to
find the root of the Lagrangian and is compared to the
conventional secant method. In our case, f (x) is the sum
of logarithmic functions, and the function h(x) is then the
logarithmic one.

4. Optimal Greedy-Type Resource Allocations

The general problem is to find the optimal resource alloca-
tion [r∗1 , . . . , r∗n ] that minimizes φ(·), the inverse robustness
measure, or frailness. This is a combinatorial optimization
problem or integer programming problem. The core idea in
this iterative resource allocation is that a sequential approach
can lead to a globally optimum discrete loading. Greedy-type
methods then converge to the optimal solution. Convexity
is not required for the convergence of the algorithm and
monotonicity is sufficient [29]. This monotonicity ensures
that the removal or addition of β bits at each iteration
converges to the optimal solution. In this paper the used
functions φ(·) are monotonic increasing functions.

In its general form and when the objective function φ(·)
is not only a weighted sum function, the iterative algorithm
is as follows:

(1) start with allocation [r
(0)
1 , . . . , r

(0)
n ] = 0,

(2) k = 0,

(3) allocate one more bit to the subchannel j for which

φ
({

r
(k+1)
i

}n

i=1

)

(29)

is minimal, with r
(k+1)
j = r

(k)
j + β and r

(k+1)
i = r

(k)
i for

all i /= j,

(4) if
∑

i r
(k+1)
i = R, terminate; otherwise k → k + 1 and

go to step 3.

The obtained resource allocation is then optimal [29] and
solves (14). This algorithm needs R/β iterations. The target
bitrate R is supposed to be feasible; that is, R is a multiple of
β. Note that an equivalent formulation can be given starting

with r
(0)
i = rmax for all i and using bit removal instead of

bit addition with maximization instead of minimization. For
bitrates higher than (n/2)rmax, the number of iterations with
bit removal is lower than with bit addition. The opposite is
true with bitrate lower than (n/2)rmax.

Iterative resource allocations have been firstly applied
to bitrate maximization under power constraint [11]. Many
works have been devoted to complexity reduction of greedy-
type algorithms; see, for example, [6, 12, 30, 31] and
references therein. In this section, only greedy-type algo-
rithms are presented in order to compare the analytical
resource allocation to the optimal iterative one. Note that the
analytical solution can also be used as an input of the greedy-
type algorithm to initialize the algorithm and to reduce the
number of iterations.
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4.1. System Margin Maximization. The system margin, or
system SNR gap, maximization under bitrate and peak-
power constraints is the inverse problem of the bitrate
maximization under SNR-gap and peak-power constraints.
This inverse problem has been solved, for example, in [18].
To comply with the general problem formulation, the inverse
system margin minimization is presented instead of the
system margin maximization.

Lemma 3. Under bitrate and peak-power constraints, the
greedy-type resource allocation that minimizes the inverse
system margin γ−1 (16) allocates sequentially β bits to the
subchannel i bearing ri bits and for which

2ri+β − 1

snri
(30)

is minimum.

Proof. It is straightforward using (17) and (29). See
Appendix A for an original proof.

The main advantage of system margin maximization
is that the optimal resource allocation can be reached
independently of the SNR regime. Resource allocation is
always possible even for very low SNR, but it can lead
to unreliable communication with SNR gap lower than 1.
Lemma 3 is given with unbounded modulation orders, that
is, rmax = ∞ and ri ∈ βN for all i. With full constraints (13),
the subchannels that reach rmax are simply removed from the
iterative process.

4.2. BER Minimization. The system BER minimization
under bitrate and peak-power constraints is the inverse
problem of bitrate maximization under peak-power and
BER constraints. This inverse problem has been solved,
for example, in [23]. Using (29) and (24), the solution of
BER minimization is straightforward, and the corresponding
greedy-type algorithm is also known as Levin-Campello
algorithm [5, 32, 33]. The main drawback of this solution
is that it requires good approximated BER expressions even
in low-SNR regime. This constraint can be relaxed, and
the following lemma gives the optimal greedy-type resource
allocation for the BER minimization.

Lemma 4. In high SNR regime and under bitrate and peak-
power constraints, the greedy-type resource allocation that
minimizes the BER minimizes (ri + β)beri(ri + β) at each step.

Proof. See Appendix B.

Lemma 4 states how to allocate bits without mean BER
computation at each step. It is given without modulation
order limitation. Like system margin maximization solution,
the bounded modulation order is simply taken into account
using rmax and subchannel removal.

4.3. Comparison of Resource Allocations. To compare the two
optimization policies, we call B the resource allocation that
maximizes the system margin and C the resource allocation

Table 1: Example of system margin and BER with n = 20, R = 100,
psdnr = 25 dB, and β = 1.

System margin BER

maximization minimization

(B) (C)

miniγi 6.9 dB 6.6 dB

ber 3.1 · 10−5 2.6 · 10−5

that minimizes the BER. Table 1 gives an example of bitrate
allocation over 20 subchannels where the SNR follows a
Rayleigh distribution and with β = 1. In this example, the
PSDNR defined in (10) is equal to 25 dB, and the maximum
allowed bitrate per subchannel is never reached. As expected,
the system margin minimization leads to a minimal SNR gap,
miniγi, higher than that provided by the BER minimization
policy with a gain of 0.3 dB. On the other hand, the BER
minimization policy leads to BER lower than that provided
by system margin minimization (2.6 ·10−5 versus 3.1 ·10−5).
In this example, the dissimilarity is µ(B, C) = 0.1, and two
subchannels convey different bitrates. All these results are
obtained with rmax = 10.

This example shows that the difference between the
resource allocation policies can be small. The question is
whether both resource allocations converge and if they
converge then in what cases. The following theorem answers
the question.

Theorem 5. In high-SNR regime with square QAM and under
bitrate and peak-power constraints, the greedy-type resource
allocation that maximizes the system margin converges to the
greedy-type resource allocation that minimizes the BER.

Proof. See Appendix D.

The consequence of Theorem 5 is that the dissimilarity
between the resource allocation that maximizes the system
margin and the resource allocation that minimizes the BER is
null in high-SNR regime and with square QAM. With square
QAM, β should be a multiple of 2. Note that with square
modulations, β can also be equal to 1 if the modulations
are, for example, those defined in ADSL [34]. Figure 6
exemplifies the convergence with β = 2 as we will see later
in Section 6.

5. Optimal Analytical Resource Allocations

The analytical method is based on convex optimization
theory [35]. Unconstrained modulations lead to bitrates ri
defined in R. With ri ∈ R+ the solution is the waterfilling
one. With bounded modulation order, that is, 0 ≤ ri ≤
rmax, the solution is quite different from the waterfilling one.
The solution is obtained in the framework of generalized
Lagrangian relaxation using Karush-Kuhn-Tucker (KKT)
conditions [36].
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As the bitrates are continuous and not only integers
in this analytical analysis, the constraints (13) do not hold
anymore and become

n
∑

i=1

ri = R , 0 ≤ ri ≤ rmax ∀i. (31)

The KKT conditions associated to the general problem (14)
with (31) instead of (13) write [36]

−ri ≤ 0 , i = 1, . . . ,n, (32)

ri − rmax ≤ 0 , i = 1, . . . ,n, (33)

R−
n
∑

i=1

ri = 0, (34)

µi ≥ 0 , i = 1, . . . ,n, (35)

νi ≥ 0 , i = 1, . . . ,n, (36)

µiri = 0 , i = 1, . . . ,n, (37)

νi(ri − rmax) = 0 , i = 1, . . . ,n, (38)

∂

∂ri
φ

(

{

r j
}n

j=1

)

− λ− µi + νi = 0 , i = 1, . . . ,n, (39)

where λ, µi and νi are the Lagrange multipliers. The first
three equations (32)–(34) represent the primal constraints,
(35) and (36) represent the dual constraints, (37) and (38)
represent the complementary slackness, and (39) is the
cancellation of the gradient of Lagrangian with respect to
ri. When the primal problem is convex and the constraints
are linear, the KKT conditions are sufficient for the solution
to be primal and dual optimal. For the system margin
maximization problem, the function φ(·) is convex over all
input bitrates and SNR whereas this function is no longer
convex for the BER minimization problem. Appendix C gives
the convex domain of the function φ(·) in the case of BER
minimization problem.

The properties of the studied function φ(·) are such that

∂

∂ri
φ

(

{

r j
}n

j=1

)

= ψi(ri) (40)

is independent of r j for all j /= i. The optimal solution that
solves (32)–(39) is then [36]

r∗i (λ) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, if λ ≤ ψi(0),

ψ−1
i (λ), if ψ i(0) < λ < ψi(rmax),

rmax, if λ ≥ ψi(rmax)

(41)

for all i = 1, . . . ,n and with λ verifying the constraint

n
∑

i=1

r∗i (λ) = R. (42)

It is worthwhile noting that the above general solution
is the waterfilling one if rmax ≥ R. The waterfilling is also the

solution in the following case. Let I′ be the subset index such
that

I
′ =

{

i | r∗i /={0, rmax}
}

, (43)

and let R′ the target bitrate over I′. In this subset, {r∗i }i∈I′

are solutions of
⎧

⎪

⎪

⎨

⎪

⎪

⎩

∂

∂ri
φ

(

{

r j
}n

j=1

)

− λ = 0 , ∀i ∈ I′

R′ −
∑

i∈I′
ri(λ) = 0.

(44)

This is the solution of (14) with unbounded modulations
over the subchannel index subset I′. If I′ = {1, · · · ,n}
and R′ = R, and (44) is also the solution of (14) with
unconstrained modulations.

5.1. System Margin Maximization

Theorem 6. Under bitrate and peak-power constraints, the
asymptotic bit allocation which minimizes the inverse system
margin is given by

r∗i =
R′

|I′| +
1

|I′|
∑

j∈I′
log2

snri
snr j

, ∀i ∈ I
′. (45)

Proof. See Appendix E.

The solution given by Theorem 6 holds for high modu-
lation orders which defines the asymptotic regime, compare
Appendix E. If the set I′ is known, then Theorem 6 can be
used directly to allocate the subchannel bitrates. Otherwise,
I′ should be found first.

The expression of r∗i in Theorem 6 is a function of the
target bitrate R′, the number |I′| of subchannels, and the
ratios of SNR. This expression is independent of the mean
received SNR or PSDNR. It does not depend on the link
budget but only on the relative distribution of subchannel
coefficients {|hi|2}ni=1.

5.2. BER Minimization. The arithmetic mean BER mini-
mization has been analytically solved, for example, in [22,
37]. This arithmetic mean measure needs to employ the
same number of bits per constellation which limits the
system efficiency. The following theorem gives the solution
of the weighted mean BER minimization that allows variable
constellation sizes in the multichannel system.

Theorem 7. Under bitrate and peak-power constraints, the
asymptotic bit allocation which minimizes the BER is given by

r∗i =
R′

|I′| +
1

|I′|
∑

j∈I′
log2

snri
snr j

∀i ∈ I
′

(46)

with equal in-phase and quadrature bitrates.

Proof. See Appendix F.

The solution given by Theorem 7 holds for high mod-
ulation orders and for subchannel BER lower than 0.1,
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and these parameters define the asymptotic regime in this
case, compare Appendix F. The optimal asymptotic resource

allocation leads to square QAM with
√

r∗i conveyed bitrate

in each in-phase and quadrature components of the signal
of subchannel i. It is important to note that, in asymptotic
regime, BER minimization and system margin maximization
lead to the same subchannel bitrate allocation. In that case,
the asymptotic regime is defined by the more stringent
context which is the BER minimization. As we will see in
Section 6, this asymptotic behavior can be observed when
β = 2.

The main drawback of the formulas in Theorems 7 and
6 is that the subset I′ must be known. To find this subset,
the negative subchannel bitrates and those higher than rmax

should be clipped, and I′ can be found iteratively [18]. But
clipping negative bitrates first can decrease those higher than
rmax, and clipping bitrates higher than rmax first can increase
the negative ones. It is then not possible to apply first the
waterfilling solution and after that to clip the bitrates ri
greater than rmax to converge to the optimal solution. Finding
the set I′ requires many comparisons, and we propose a fast
iterative solution based on the generalized secant method.

5.3. Lagrangian Resolution. To solve (41), numerical iterative
methods are required. It is important to observe that
the function defined in (41) is not differentiable, and,
thus, methods like Newton’s cannot be used [18]. We use
the proposed generalized secant method to better fit the
function-depending weight and increase the speed of the
convergence. An important point for the iterative method is
that the initialization value must lead to feasible solution and
should be as close as possible to the final solution.

The root of the function defined by (42) is now
calculated. Let

f (λ) =
n
∑

i=1

ri(λ)− R. (47)

Theorems 6 and 7 show that r(λ) is the sum of log2(·)
functions. This is the reason why the function log2(·) is
used in the generalized secant method. Figure 2 shows three
functions versus the parameter λ. The first function is the
input function f (λ), the second one is the function used by
the generalized secant method, and the last one if the linear
function used by the secant method. In this example, the
common points are λ = 0 and λ = 2.3. As it is shown, the
generalized secant method better fits the input function than
the secant method and therefore can improve the speed of
the convergence to find the root which is around λ = 1/80 in
this example.

To ensure the convergence of the secant methods, the
algorithm should be initialized with λ1 and λ2 such as
f (λ1) < 0 and f (λ2) > 0. For both optimization problems,
system margin maximization and BER minimization, the
parameter λ is given by the function ψi(ri), and it can be
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New generalized secant method
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Figure 2: Approximation of the input function f (λ) with the
generalized secant method and the secant method, n = 1024 and
rmax = 15.

reduced to λ = 2ri /snri, as shown in Appendices E and F.
Parameters {λ1, λ2} are then chosen as

λ1 =
1

maxi snri
, λ2 =

2rmax

mini snri
. (48)

Using (41), λ ≤ λ1 leads to ri(λ) = 0 for all i, and λ ≥ λ2 leads
to ri(λ) = rmax for all i. Then, it follows that f (λ1) < 0 and
f (λ2) > 0 if R ∈ (0,nrmax).

Figure 3 shows the needed number of iterations for
the convergence of the generalized and conventional secant
methods versus the target bitrate R. Results are given over
a Rayleigh distribution of the subchannel SNR with 1024
subchannels. The possible bitrates are then R ∈ [0,n× rmax]
and β = 2. Here, rmax = 15 and then R ≤ 15360 bits
per multidimensional symbol. For comparison, the number
of iterations needed by the greedy-type algorithm is also
plotted. Note that the greedy-type algorithm can start by
empty bitrate or by full bitrate limited by rmax for each
subchannel. The number of iterations is then given by
min{R,nrmax−R}. The iterative secant and generalized secant
methods are stopped when the bitrate error is lower than
1. A better precision is not necessary since exact bitrates
{ri}i∈I′ can be computed using Theorems 6 and 7 when
I′ is known. As it is shown in Figure 3, the generalized
secant method converges faster than the secant method,
except for the very low target bitrates R. For very high target
bitrates, near from n×rmax, the number of iterations with the
generalized secant method can be higher than that with the
greedy-type algorithm. Except for these particular cases, the
generalized secant method needs no more than 4-5 iterations
to converge. In conclusion, we can say that with Rayleigh
distribution of {snri}ni=1 and for target bitrates R such that
3% ≤ R/nrmax ≤ 97%, the generalized secant method
converges faster than the secant method or the greedy-type
algorithm.
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Figure 3: Number of iterations of the secant and generalized secant
methods, and greedy-type algorithm versus the target bitrate, n =
1024, rmax = 15.

Using the generalized secant method, the bitrates are not
integers and for all i, r∗i ∈ [0, rmax]. These solutions have to
be completed to obtain integer bitrates.

5.4. Integer-Bit Solution. Starting from the continuous
bitrate allocations previously presented, a loading procedure
is developed taking into account the integer nature of the
bitrates to be allotted. A simple solution is to consider the
integer part of {r∗i }i∈I′ and to complete by a greedy-type
algorithm to achieve the target bitrate R. The integer part
of {r∗i }i∈I′ is then used as a starting point for the greedy
algorithm. This procedure can lead to a high number of
iterations. Therefore, the secant or bisection methods are
suitable to reduce the number of iterations. The problem to
solve is then to find the root of the following function [18]:

g(α) =
∑

i∈I′

⌊

r∗i + βα
⌋

− R′, (49)

where r∗i , I′, and R′ are given by the continuous Lagrangian
solution. This is a suboptimal integer bitrate problem, and
the optimal one needs to find {αi}ni=1 instead of a unique α.
As the optimal solution leads to a huge number of iterations,
it is not considered. The function (49) is a nondecreasing
and nondifferentiable staircase function such that g(0) < 0,
g(1) > 0 because

∑

i∈I′ r
∗
i = R′. The iterative methods can

then be initialized with α1 = 0 and α2 = 1.
Two iterative methods are compared: the bisection one

and the secant one. Both methods are also compared to
the greedy-type algorithm. Figure 4 presents the number
of iterations of the three methods to solve the integer-bit
problem of the Lagrangian solution with β = 1. Results are
given over a Rayleigh distribution of the subchannel SNR,
with 1024 subchannels and the target bitrates are between
0 and n × rmax = 15360. As it is shown, the convergence
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Figure 4: Number of iterations of the bisection and secant methods,
and greedy-type algorithm for integer-bit solution versus target
bitrate, n = 1024, rmax = 15.

is faster with bisection method than with greedy-type
algorithm. For target bitrates between 10% and 90% of the
maximal loadable bitrate, the secant method outperforms
the bisection one with a mean number of iterations around
4 whereas the number of iterations for bisection method
is higher than 8. Figure 4 also shows that |g(0)| is all the
time lower than the half of number of subchannels and
around this value for target bitrate between 10% and 90%
of the maximal loadable bitrate. Then, if the number of
iterations induces by the greedy-type algorithm to solve
the integer-bit problem of the Lagrangian solution that is
acceptable in a practical communication system, this greedy-
type completion can be used and appears to lead to the
optimal resource allocation. This result obtained without
proof means that the greedy-type procedure has enough
bits to converge to the optimal solution. If the number of
iterations induced by the greedy-type algorithm is too high
(this number is around n/2), the secant method can be used.

The overall analytical resolution of (14) needs few
iterations compared to the optimal greedy-type algorithm.
Whereas the continuous solution of (14) is optimal, the
analytical integer bitrate solution is suboptimal.

6. Greedy-Type versus Analytical
Resource Allocations

In the previous section, the numbers of iterations of the algo-
rithms have been compared. In this section, robustness com-
parison is presented and the analytical solutions obtained in
asymptotic regime are also applied in nonasymptotic regime
which means that β = 1 and modulation orders can be low.

The evaluated OFDM communication system is com-
posed of 1024 subcarriers without interferences between the
symbols or the subcarriers. The channel is the Rayleigh
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Figure 5: Target bitrate versus input PSDNR.

fading one with independent and identically distributed
elements. The richest modulation order is rmax = 10. The
robustness measures are evaluated for different target bitrates
which are given with the following arbitrary equation:

R =

⎢

⎢

⎢

⎣

n
∑

i=1

min

(

log2

(

1 +
snri

2

)

, rmax

)

⎥

⎥

⎥

⎦. (50)

This equation ensures reliable communications for all the
input target bitrates or PSDNR. The empirical relationship
between PSDNR and target bitrate is also given in Figure 5.

Figure 6 presents the output BER and the system margin
of three resource allocation policies versus the target bitrate
R. The first one, A, is obtained using analytical optimization,
the second, B, is the solution of the greedy-type algorithm
which maximizes the system margin, and the third, C, is the
solution of the greedy-type algorithm which minimizes the
BER. Two cases are presented: one with β = 1 and the other
with β = 2. All subchannel BER are lower than 2·10−2 to use
valid BER approximations. Note that, with β = 1, the system
margin of allocation B is almost equal to 8.9 dB for all target-
bit rates. This constant system margin γ is not a feature of the
algorithm but is only a consequence of the relation between
the target bitrate and the PSDNR.

To enhance the equivalences and the differences between
the resource allocation policies, the dissimilarity is also given
in Figure 6 with β = 1 and β = 2. As expected in both
cases, β = 1 and β = 2, the minimal BER are obtained
with allocation C, and the maximal system margins with
allocation B.

With β = 1 and when the target bitrate increases, the
Lagrangian solution converges faster to the optimal system
margin maximization solution, B, than to the optimal BER
minimization solution, C. Note that Theorem 7 is an asymp-
totic result valid for square QAM. With β = 1, the QAM can
be rectangular, and the asymptotic result of Theorem 7 is not
applicable, contrary to the result of Theorem 6 where there is
not any condition on the modulation order.

The case β = 2 shows the equivalence between the
optimal system margin maximization allocation and the
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Figure 6: BER, system margin and dissimilarity versus target bitrate
for Lagrangian (A), greedy-type system margin maximization (B)
and greedy-type BER minimization (C) algorithms, n = 1024,
rmax = 10, and β ∈ {1, 2}.

optimal BER minimization allocation. In this case, the
asymptotic result given by Theorems 5 and 7 can be
applied because the modulations are square QAM, and the
convergence is ensured with high modulation orders, that is,
high target bitrates. Beyond a mean bitrate per subchannel
around 6, that corresponds to a target bitrate around 6000,
all the allocations A, B and C are equivalent, and the
dissimilarity is almost equal to zero. In nonasymptotic
regime, the differences in BER and system margin are low.
The system margin differences are lower than 1 dB, and the
ratios between two BER are around 3. In practical integrated
systems, these low differences will not be significant and
will lead to similar solutions for both optimization policies.
Therefore, these resource allocations can be interchanged.

7. Conclusion

Two robustness optimization problems have been analyzed
in this paper. Weighted mean BER minimization and
minimal subchannel margin maximization have been solved
under peak-power and bitrate constraints. The asymp-
totic convergence of both robustness optimizations has
been proved for analytical and algorithmic approaches.
In nonasymptotic regime, the resource allocation policies
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can be interchanged depending on the robustness measure
and the operating point of the communication system.
We have also proved that the equivalence between SNR-
gap maximization and power minimization in conventional
MM problem does not hold with peak-power limitation
without additional conditions. Integer bit solution of ana-
lytical continuous bitrates has been obtained with a new
generalized secant method, and bit-loading solutions have
been compared with a new defined dissimilarity measure.
The low computational effort of the suboptimal resource
allocation strategy, based on the analytical approach, leads
to a good tradeoff between performance and complexity.

Appendices

A. Proof of Lemma 3

We prove that the optimal allocation is reached starting
from empty loading with the same intermediate loading than
starting from optimal loading to empty loading. To simplify
the notation and without loss of generality, β = 1.

Let [r∗1 , . . . , r∗n ] be the optimal allocation that minimizes
the inverse system margin γ(R∗)−1 for the target bitrate R∗,
and then

γ(R∗)−
1 = max

i

2ri − 1

snri
. (A.1)

Let [r1, . . . , rn] be the optimal allocation that minimizes the
inverse system margin γ(R+1)−1 for the target bitrate R+1 ≤
R∗. The optimal allocation for target bitrate R is obtained
iteratively by removing one bit at a time from the subchannel
k with the highest inverse system margin [38]

k = arg max
i

2ri − 1

snri
(A.2)

or

2rk − 1

snrk
≥ 2ri − 1

snri
, ∀i = 1, . . . ,n. (A.3)

The last bit removed is from the subchannel with the lowest
inverse-SNR, snr−1

i , because the bits over the highest inverse-
SNR are first removed.

Now, let [r1, . . . , rn] be the optimal allocation that
minimizes the inverse system margin γ(R)−1 for the target
bitrate R < R∗. Following the algorithm strategy, the optimal
allocation for target bitrate R + 1 is obtained adding one bit
on subchannel j such that

j = arg min
i

2ri+1 − 1

snri
. (A.4)

We first prove that

γ(R + 1)−
1 = 2r j+1 − 1

snr j
. (A.5)

Suppose that there exists j′ such that

2r j′ − 1

snr j′
>

2r j+1 − 1

snr j
, (A.6)

then one bit must be added to subchannel j to obtain r j + 1
bits before adding one bit to subchannel j′ to obtain r j′ bits
which means that [r1, . . . , rn] is not optimal. As [r1, . . . , rn] is
optimal by definition, it yields

2ri − 1

snri
≤ 2r j+1 − 1

snr j
∀i = 1, . . . ,n (A.7)

which proves (A.5). The first allocated bit is from the
subchannel with the lowest inverse SNR given by (A.4) with
ri = 0 for all i.

Comparing (A.3) with (A.7) yields that k = j, and
the index subchannel of the first added bit is the same as
the last removed bit. All the intermediate allocations are
then identical with bit-addition and bit-removal methods.
There exists only one way to reach the optimal allocation R∗

starting from the empty loading.
Proof of Lemma 3 can also be provided in the framework

of matroid algebraic theory [19, 39].

B. Proof of Lemma 4

To simplify the notation and without loss of generality, the
proof is given with β = 1. Let [r1, · · · , rn] be the optimal
allocation for the target bitrate R such that

∑

ri = R. Let R+1
the new target bitrate. We first prove that

∆i(ri) = (ri + 1)beri(ri + 1)− riberi(ri) (B.1)

is a good measure at each step of the greedy-type algorithm
for the BER minimization, and finally that (ri + 1)beri(ri + 1)
can be used instead of ∆i(ri).

Starting from the optimal allocation of target bitrate R,
the new target bitrate R + 1 is obtained by increasing r j by
one bit

ber(R + 1) =

(

r j + 1
)

ber j
(

r j + 1
)

+
∑n

i=1, i /= j riberi(ri)

1 +
∑n

i=1 ri
(B.2)

and, using ∆ j ,

ber(R + 1) =
∆ j

(

r j
)

R + 1
+

R

R + 1
ber(R). (B.3)

The ber(R + 1) which is equal to φ({r(k+1)
i }ni=1) in (29)

is minimized only if ∆ j(r j) is minimized. The minimum
ber(R + 1) is then obtained with the increase of one bit in
the subchannel j such that

j = arg min
i
∆i(ri). (B.4)

To complete the proof by induction, the relation must be
true for ber(1). This is simply done by recalling that beri(0) =
0, and then

min ber(1) = min
i

beri(1) = min
i

∆i(0). (B.5)

The convergence of the algorithm to a unique solution needs
the convexity of the function ri �→ riber(ri). This convexity
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is verified at high SNR. Appendix C provides a more precise
domain of validity.

It remains to prove that (ri + 1)beri(ri + 1) can be used
instead of ∆i(ri). In high SNR regime

beri(ri + 1) ≫ beri(ri) (B.6)

and then

lim
snri→+∞

∆i(ri) = (ri + 1)beri(ri + 1) (B.7)

which proves the lemma.
In low SNR regime, the approximation of ∆i by (ri +

1)beri(ri + 1) remains valid; the dissimilarity between allo-
cation using ∆i (B.1) and allocation using (ri + 1)beri(ri + 1)
is null in the domain of validity given by Appendix C.

C. Range of Convexity of riberi

Let

f : N −→ R+ri �−→ riberi(ri, snri) (C.1)

which equals the SER for high-SNR regime and Gray
mapping. The function f is a strictly increasing function:
f (ri) < f (ri + 1) for all snri, because ber(ri, snri) ≤ ber(ri +
1, snri) and ri < ri + 1. Let ∆(ri) = f (ri + 1)− f (ri), and then

∆(ri + 1)− ∆(ri) = f (ri + 2)− 2 f (ri + 1) + f (ri)

≥ (ri + 1)(beri(ri + 2)− 2beri(ri + 1)).

(C.2)

If beri(ri + 2) ≥ 2beri(ri + 1), then the function f is locally
convex or defines a convex hull. This relation is verified for
BER lower than 2× 10−2 and for all ri ≥ 0.

D. Proof of Theorem 5

We prove that both metrics used in Lemmas 3 and 4 lead to
the same subchannel SNR ordering. Let

f (ri, snri) =
2ri+β − 1

snri
,

g(ri, snri) =
(

ri + β
)

beri
(

ri + β
)

.

(D.1)

We then have to prove that

f (ri, snri) ≤ f
(

r j , snr j
)

⇐⇒ g(ri, snri) ≤ g
(

r j , snr j
)

. (D.2)

It is straightforward that

f (ri, snri) ≤ f
(

r j , snr j
)

⇐⇒
snr j

snri
≤ 2r j+β − 1

2ri+β − 1
. (D.3)

With square QAM, in high SNR regime and using (26)

g(ri, snri) = 2

(

1− 1
√

2ri+β

)

erfc

(√

3

2
(

2ri+β − 1
) snri

)

(D.4)

and it can be approximated by the following valid expression

g(ri, snri) = 2 erfc

(√

3

2
(

2ri+β − 1
) snri

)

. (D.5)

Then,

g(ri, snri) ≤ g
(

r j , snr j
)

⇐⇒
snr j

snri
≤ 2r j+β − 1

2ri+β − 1
(D.6)

which is also given by the first inequality. In high SNR regime
and with square QAM, that is, β = 2, f (·) and g(·) lead to
the same subchannel SNR ordering and then

arg min
i

f (ri, snri) = arg min
i

g(ri, snri). (D.7)

This last equation does not hold in low SNR regime (the
BER approximation is not valid) or when the modulations
are not square, that is, when ri is odd. Note that (D.5) is not
only a good approximation in high SNR regime, it can also
be used with high modulation orders with moderate SNR
regime defined in Appendix C.

E. Proof of Theorem 6

As the infinite norm is not differentiable, we use the k norm
with

lim
k→+∞

⎛

⎝

∑

i∈I′
γ−ki

⎞

⎠

1/k

= max
i∈I′

(

γ−1
i

)

. (E.1)

In the subset I′, the Lagrangian of (18) for all k is

Lk({ri}i∈I′ , λ) =
⎛

⎝

∑

i∈I′

(2ri − 1)k

snrki

⎞

⎠

1/k

+ λ

⎛

⎝R′ −
∑

i∈I′
ri

⎞

⎠.

(E.2)

Let λ′ such as

λ′ =
⎛

⎝

∑

i∈I′

(2ri − 1)k

snrki

⎞

⎠

(k−1)/k

λ

log 2
. (E.3)

The optimal condition yields

2ri(2ri − 1)k−1 = snrki λ
′. (E.4)

In asymptotic regime, ri ≫ 1 and then 2ri − 1 ≃ 2ri . The
equation of the optimal condition can be simplified and

ri = log2(snri) +
1

k
log2λ

′. (E.5)

The Lagrange multiplier is to identify using the bitrate
constraint, and replacing λ′ in the above equation leads to
the solution

ri =
R′

|I′| +
1

|I′|
∑

j∈I′
log2

snri
snr j

. (E.6)
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Note that we do not need to calculate the convergence of the
solution with k → +∞ to obtain the result for the infinite
norm. The result holds for all values of k in asymptotic
regime.

With k = 1, the problem is a sum SNR-gap maximization
problem under peak-power constraint, and it can be solved
without asymptotic regime condition. Note that this sum
SNR-gap maximization problem, or sum inverse SNR-
gap minimization problem, under peak-power and bitrate
constraints is

min
∑

i∈I′
γ−1
i = min

{ri}i∈I′

∑

i∈I′
(2ri − 1)

σ2
Wi

|hi|2Ppi
(E.7)

and is very similar to power minimization problem under
bitrate and SNR-gap constraints exchanging pi with γ−1

i

min
∑

i∈I′
pi = min

{ri}i∈I′

∑

i∈I′
(2ri − 1)

σ2
Wi

|hi|2Pγ−1
i

. (E.8)

Both problems are identical if piγi = α as it is stated by
Lemma 1.

F. Proof of Theorem 7

To prove this theorem, variables Ii and Ji are used instead of
ri with

Ii = 2⌊ri/2⌋, Ji = 2⌈ri/2⌉, (F.1)

and the bitrate constraint is

R =
n
∑

i=1

log2(IiJi). (F.2)

In the subset I′, the Lagrangian of (25) is then

L({Ii, Ji}i∈I′ , λ) = 1

R′

∑

i∈I′

(

2− 1

Ii
− 1

Ji

)

× erfc

(√

3

I2
i + J2

i − 2
snri

)

+ λ

⎛

⎝R′ −
∑

i∈I′
log2(IiJi)

⎞

⎠.

(F.3)

Let Xi ∈ {Ii, Ji}, then

∂L

∂Xi
= Xi f (Ii, Ji) +

1

X2
i

g(Ii, Ji)−
1

Xi
λ, (F.4)

with

f (Ii, Ji) =
1

R′

(

2− 1

Ii
− 1

Ji

)

2
√

3snri × e−3snri/(I
2
i +J2

i −2)

√
π
(

I2
i + J2

i − 2
)3/2 ,

g(Ii, Ji) =
1

R′
erfc

(√

3snri
I2
i + J2

i − 2

)

.

(F.5)

The optimality condition yields
(

I2
i − J2

i

)

IiJi f (Ii, Ji) = (Ii − Ji)g(Ii, Ji) ∀i. (F.6)

A trivial solution is Ii = Ji, and the other solution must verify

(Ii + Ji)IiJi f (Ii, Ji)− g(Ii, Ji) = 0. (F.7)

To find the root of (F.7), let

h
(

x, y
)

= x
√

ye−y − erfc
(

√

y
)

(F.8)

with

x = 2√
π

(Ii + Ji)IiJi
I2
i + J2

i − 2

(

2− 1

Ii
− 1

Ji

)

,

y = 3snri
I2
i + J2

i − 2
.

(F.9)

We will prove that this function is positive in a specific
domain. Consider that

(1)
√
ye−y > erfc(

√
y) for y ≥ 0.334, then for BER lower

than 10−1.

(2)
√
π/2x > 1 for {Ii, Ji} ∈ [1, +∞)2 and Ii /= 1 or Ji /= 1,

and limIi,Ji→ 1
√
π/2x = 1+.

Then, in the domain defined by

{Ii, Ji} ∈ [1, +∞)2 ∧ beri ≤ 0.1, (F.10)

h(x, y) is positive, and (F.7) has no solution. Thus, the only
one solution of (F.6) with (F.10) is Ii = Ji. As we will see later
the domain of (F.10) is less restrictive than the asymptotic
one.

The problem is now to allocate bits with square QAM.
The following upper bound is used:

ber(ri) =
2

ri
erfc

(√

3snri
2(2ri − 1)

)

. (F.11)

Note that this upper bound is a tight approximation with
high SNR and with high modulation orders. The Lagrangian
is that

L({ri}i∈I′ , λ) = 2

R′

∑

i∈I′
erfc

(√

3snri
2(2ri − 1)

)

+ λ

⎛

⎝R′ −
∑

i∈I′
ri

⎞

⎠.

(F.12)

And its derivative is

∂L

∂ri
= ln 2√

π

2ri

2ri − 1

√

3snri
2(2ri − 1)

e−3snri/2(2ri−1) − λ. (F.13)

Let ri ≫ 1 for all i, then 2ri − 1 ≃ 2ri , and the optimality
condition yields

−3snri
2ri

e−3snri/2ri = −2λ2π

ln22
. (F.14)

With reliable communication over the subchannel i, the
Shannon’s relation states that ri ≤ log2(1 + snri) and
3snri/2ri ≥ 3/2 because ri ≥ 1. The relation between ri and
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λ is then bijective, and the real branch W−1 of the Lambert
function [40] can be used with no possibility for confusion

ri = log2(3snri)− log2

(

−W−1

(

−2λ2π

ln22

))

. (F.15)

With the bitrate constraint R′ =
∑

i∈I′ ri, we can write

−log2

(

−W−1

(

−2λ2π

ln22

))

= R′

|I′| −
1

|I′|

n
∑

i=1

log2(3snri)

(F.16)

and with (F.15)

ri =
R′

|I′| +
1

|I′|

n
∑

j∈I′
log2

snri
snr j

. (F.17)

This result is obtained with square QAM in asymptotic
regime (high modulation orders and high SNR) which is a
more restrictive domain than that of (F.10).
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