104 research outputs found

    Quantum Critical Behavior in Disordered Itinerant Ferromagnets: Instability of the Ferromagnetic Phase

    Full text link
    An effective field theory is derived that describes the quantum critical behavior of itinerant ferromagnets as the transition is approached from the ferromagnetic phase. This complements a recent study of the critical behavior on the paramagnetic side of the phase transition, and investigates the role of the ferromagnetic Goldstone modes near criticality. We find that the Goldstone modes have no direct impact on the critical behavior, and that the critical exponents are the same as determined by combining results from the paramagnetic phase with scaling arguments.Comment: 11 pp., revtex4, no fig

    The Cyclin-Dependent Kinase 5 Inhibitor Peptide Inhibits Herpes Simplex Virus Type 1 Replication

    Get PDF
    © 2019, The Author(s). In order to evaluate the influence of CDK5 inhibitory peptide (CIP) on Human alphaherpesvirus 1 (HSV-1) replication, we constructed two recombinant adeno-associated-virus 2 (rAAV2) vectors encoding CIP fused with cyan-fluorescent-protein (CFP), with or without nuclear localization signal. A third vector encoding non-fused CIP and CFP was also constructed. HeLa and HEK 293T cells were infected with the rAAV-CIP vectors at multiplicity of infection (MOI) of 5000, in the absence or presence of a recombinant HSV-1 that encodes a yellow-fluorescent-protein (rHSV48Y; MOI = 1). Cells co-infected with rHSV48Y and rAAV vectors that did not express the CIP gene (rAAV-CFP-Neo) served as controls. At 24 h after infection, the effect of CIP on rHSV48Y replication was assessed by PCR, qRT-PCR, Western-blot, flow-cytometry, epifluorescence and confocal microscopy. We show that in cultures co-infected with rAAV-CFP-Neo, 27% of the CFP-positive cells present rHSV48Y replication compartments. By contrast, in cultures co-infected with CIP-encoding rAAV2 vectors and rHSV48Y only 6–20% of the cells positive for CIP showed rHSV48Y replication compartments, depending on the CIP variant. Flow-cytometry showed that less than 40% of the rHSV48Y/rAAV-CIP, and more than 75% of rHSV48Y/rAAV-CFP-Neo co-infected cells were positive for both transgene products. The microscopy and flow-cytometry data support the hypothesis that CIP is inhibiting HSV-1 replication

    Herpes simplex virus 1 amplicon vector-mediated siRNA targeting epidermal growth factor receptor inhibits growth of human glioma cells in vivo

    Get PDF
    In primary glioblastomas and other tumor types, the epidermal growth factor receptor (EGFR) is frequently observed with alterations, such as amplification, structural rearrangements, or overexpression of the gene, suggesting an important role in glial tumorigenesis and progression. In this study, we investigated whether posttranscriptional gene silencing by vector-mediated RNAi to inhibit EGFR expression can reduce the growth of cultured human gli36 glioma cells. To "knock down" EGFR expression, we have created HSV-1-based amplicons that contain the RNA polymerase III-dependent H1 promoter to express double-stranded hairpin RNA directed against EGFR at two different locations (pHSVsiEGFR I and pHSVsiEGFR II). We demonstrate that both pHSVsiEGFR I and pHSVsiEGFR II mediated knock-down of transiently transfected full-length EGFR or endogenous EGFR in a dose-dependent manner. The knock-down of EGFR resulted in the growth inhibition of human glioblastoma (gli36-luc) cells both in culture and in athymic mice in vivo. Cell cycle analysis and annexin V staining revealed that siRNA-mediated suppression of EGFR induced apoptosis. Overall HSV-1 amplicons can mediate efficient and specific posttranscriptional gene silencing. Copyright © The American Society of Gene Therapy

    Inhibition of DNA Repair Mechanisms and Induction of Apoptosis in Triple Negative Breast Cancer Cells Expressing the Human Herpesvirus 6 U94

    Get PDF
    Triple-negative breast cancer (TNBC) accounts for 15-20% of all breast cancers. In spite of initial good response to chemotherapy, the prognosis of TNBC remains poor and no effective specific targeted therapy is readily available. Recently, we demonstrated the ability of U94, the latency gene of human herpes virus 6 (HHV-6), to interfere with proliferation and with crucial steps of the metastatic cascade by using MDA-MB 231 TNBC breast cancer cell line. U94 expression was also associated with a partial mesenchymal-to-epithelial transition (MET) of cells, which displayed a less aggressive phenotype. In this study, we show the ability of U94 to exert its anticancer activity on three different TNBC cell lines by inhibiting DNA damage repair genes, cell cycle and eventually leading to cell death following activation of the intrinsic apoptotic pathway. Interestingly, we found that U94 acted synergistically with DNA-damaging drugs. Overall, we provide evidence that U94 is able to combat tumor cells with different mechanisms, thus attesting for the great potential of this molecule as a multi-target drug in cancer therapy

    Switching on the Lights for Gene Therapy

    Get PDF
    Strategies for non-invasive and quantitative imaging of gene expression in vivo have been developed over the past decade. Non-invasive assessment of the dynamics of gene regulation is of interest for the detection of endogenous disease-specific biological alterations (e.g., signal transduction) and for monitoring the induction and regulation of therapeutic genes (e.g., gene therapy). To demonstrate that non-invasive imaging of regulated expression of any type of gene after in vivo transduction by versatile vectors is feasible, we generated regulatable herpes simplex virus type 1 (HSV-1) amplicon vectors carrying hormone (mifepristone) or antibiotic (tetracycline) regulated promoters driving the proportional co-expression of two marker genes. Regulated gene expression was monitored by fluorescence microscopy in culture and by positron emission tomography (PET) or bioluminescence (BLI) in vivo. The induction levels evaluated in glioma models varied depending on the dose of inductor. With fluorescence microscopy and BLI being the tools for assessing gene expression in culture and animal models, and with PET being the technology for possible application in humans, the generated vectors may serve to non-invasively monitor the dynamics of any gene of interest which is proportionally co-expressed with the respective imaging marker gene in research applications aiming towards translation into clinical application

    Herpes simplex virus type 1-derived recombinant and amplicon vectors

    Full text link
    Herpes simplex virus type 1 (HSV-1) is a human pathogen whose lifestyle is based on a long-term dual interaction with the infected host, being able to establish both lytic and latent infections. The virus genome is a 153 kbp double-stranded DNA molecule encoding more than 80 genes. The interest of HSV-1 as gene transfer vector stems from its ability to infect many different cell types, both quiescent and proliferating cells, the very high packaging capacity of the virus capsid, the outstanding neurotropic adaptations that this virus has evolved, and the fact that it never integrates into the cellular chromosomes, thus avoiding the risk of insertional mutagenesis. Two types of vectors can be derived from HSV-1, recombinant vectors and amplicon vectors, and different methodologies have been developed to prepare large stocks of each type of vector. This chapter summarizes (1) the two approaches most commonly used to prepare recombinant vectors through homologous recombination, either in eukaryotic cells or in bacteria, and (2) the two methodologies currently used to generate helper-free amplicon vectors, either using a bacterial artificial chromosome (BAC)-based approach or a Cre/loxP site-specific recombination strategy

    Construction and packaging of herpes simplex virus/adeno-associated virus (HSV/AAV) Hybrid amplicon vectors

    Full text link
    Herpes simplex virus type 1 (HSV-1)-based amplicon vectors conserve most properties of the parental virus: broad host range, the ability to transduce dividing and nondiving cells, and a large transgene capacity. This permits incorporation of genomic sequences as well as cDNA, large transcriptional regulatory sequences for cell-specific expression, multiple transgene cassettes, or genetic elements from other viruses. Hybrid vectors use elements from HSV-1 that allow replication and packaging of large-vector DNA into highly infectious particles, and elements from other viruses that confer genetic stability to vector DNA in the transduced cell. For example, adeno-associated virus (AAV) has the unique ability to integrate its genome into a specific site on human chromosome 19. The viral rep gene and the inverted terminal repeats (ITRs) that flank the AAV genome are sufficient for this process. However, AAV-based vectors have a very small transgene capacity and do not conventionally contain the rep gene to support site-specific genomic integration. HSV/AAV hybrid vectors contain both HSV-1 replication and packaging functions and the AAV rep gene and a transgene cassette flanked by the AAV ITRs. This combines the large transgene capacity of HSV-1 with the capability of site-specific genomic transgene integration and long-term transgene expression of AAV. This protocol describes the preparation of HSV/AAV hybrid vectors using a replication-competent/conditional, packaging-defective HSV-1 genome cloned as a bacterial artificial chromosome (BAC) to provide helper functions for vector replication and packaging. The advantages and limitations of such vectors compared to standard HSV-1 amplicon vectors are also discussed

    Herpes Simplex Virus Type 1-Derived Recombinant and Amplicon Vectors

    No full text
    Herpes simplex virus type 1 (HSV-1) is a human pathogen whose lifestyle is based on a long-term dual interaction with the infected host, being able to establish both lytic and latent infections. The virus genome is a 153 kbp double-stranded DNA molecule encoding more than 80 genes. The interest of HSV-1 as gene transfer vector stems from its ability to infect many different cell types, both quiescent and proliferating cells, the very high packaging capacity of the virus capsid, the outstanding neurotropic adaptations that this virus has evolved, and the fact that it never integrates into the cellular chromosomes, thus avoiding the risk of insertional mutagenesis. Two types of vectors can be derived from HSV-1, recombinant vectors and amplicon vectors, and different methodologies have been developed to prepare large stocks of each type of vector. This chapter summarizes (1) the two approaches most commonly used to prepare recombinant vectors through homologous recombination, either in eukaryotic cells or in bacteria, and (2) the two methodologies currently used to generate helper-free amplicon vectors, either using a bacterial artificial chromosome (BAC)-based approach or a Cre/loxP site-specific recombination strategy
    • …
    corecore