1,330 research outputs found

    Quantum Monte Carlo calculations of the dimerization energy of borane

    Get PDF
    Accurate thermodynamic data are required to improve the performance of chemical hydrides that are potential hydrogen storage materials. Boron compounds are among the most interesting candidates. However, different experimental measurements of the borane dimerization energy resulted in a rather wide range ( 1234.3 to 1239.1) \ub1 2 kcal/mol. Diffusion Monte Carlo (DMC) simulations usually recover more than 95% of the correlation energy, so energy differences rely less on error cancellation than other methods. DMC energies of BH3, B2H6, BH3 CO, CO, and BH2+ allowed us to predict the borane dimerization energy, both via the direct process and indirect processes such as the dissociation of BH3CO. Our De = 1243.12(8) kcal/mol, corrected for the zero point energy evaluated by considering the anharmonic contributions, results in a borane dimerization energy of 1236.59(8) kcal/mol. The process via the dissociation of BH3CO gives 1234.5(2) kcal/mol. Overall, our values suggest a slightly less De than the most recent W4 estimate De = 1244.47 kcal/mol [A. Karton and J. M. L. Martin, J. Phys. Chem. A 111, 5936 2007)]. Our results show that reliable thermochemical data for boranes can be predicted by fixed node (FN)-DMC calculations

    Structure of the Southern Patagonian Andes at 49ºS, Argentina

    Get PDF
    This paper describes Late Paleozoic Gondwanan and Late Cretaceous to Early Cenozoic Andean structures in the Southern Patagonian Andes and an associated Extra-Andean region between lakes San Martín and Viedma. The study area encompasses a 200-km-long W-E section between the Patagonian icefield and the 72ºW longitude meridian, in Argentine Patagonia. The oldest structures are of Late Paleozoic age and developed through at least two deformation phases during the Gondwanan Orogeny. The first deformation phase (Dg1) includes isoclinal and N-overturned WNW trending folds and associated thrusts, including duplexes. The second deformation phase includes NNE trending open folds (Dg2). Deformation occurred in non-metamorphic to very low-grade metamorphic conditions. A spaced rough cleavage is found near the first phase fold hinges. The Eocene and Miocene Andean structural compression resulted in a N-S oriented fold and thrust belt. This belt is comprised of three morphostructural zones from W to E, with distinctive topographic altitudes and structural styles: Andean; Sub-Andean; and Extra-Andean zones. The first corresponds to the inner fold and thrust belt, while the last two are part of the outer fold and thrust belt. The Andean zone (3400–2000m above sea level) is characterized by N-S to NNE trending, E-vergent, Cenozoic reverse faults and associated minor thrusts. The northern part of the Sub- Andean zone (2000–1500m above sea level) consists of W-vergent reverse faults and some NNE open folds. The southern part of the Andean zone includes tight folds with box and kink geometries, related to thrusts at deeper levels. In the Extra-Andean zone, with maximum heights of 1500m, the deformation is less intense, and gentle folds deform the Upper Cretaceous sediments. An inherited Jurassic N-S extensional fault system imposed a strong control on this morphostructural zonation. Also the variation of the Austral Basin sedimentary thickness in the N-S direction seems to have influenced the structural styles of the outer fold and thrust belt. Those differences in sedimentary thickness may be related to S-dipping transfer zones associated to W-E Jurassic extension. In turn, the transfer zones may have been controlled by the N-vergent WNW, Dg1, Gondwanan structural fabric

    Structure of the Southern Patagonian Andes at 49ºS, Argentina

    Get PDF
    This paper describes Late Paleozoic Gondwanan and Late Cretaceous to Early Cenozoic Andean structures in the Southern Patagonian Andes and an associated Extra-Andean region between lakes San Martín and Viedma. The study area encompasses a 200-km-long W-E section between the Patagonian icefield and the 72ºW longitude meridian, in Argentine Patagonia. The oldest structures are of Late Paleozoic age and developed through at least two deformation phases during the Gondwanan Orogeny. The first deformation phase (Dg1) includes isoclinal and N-overturned WNW trending folds and associated thrusts, including duplexes. The second deformation phase includes NNE trending open folds (Dg2). Deformation occurred in non-metamorphic to very low-grade metamorphic conditions. A spaced rough cleavage is found near the first phase fold hinges. The Eocene and Miocene Andean structural compression resulted in a N-S oriented fold and thrust belt. This belt is comprised of three morphostructural zones from W to E, with distinctive topographic altitudes and structural styles: Andean; Sub-Andean; and Extra-Andean zones. The first corresponds to the inner fold and thrust belt, while the last two are part of the outer fold and thrust belt. The Andean zone (3400-2000m above sea level) is characterized by N-S to NNE trending, E-vergent, Cenozoic reverse faults and associated minor thrusts. The northern part of the Sub- Andean zone (2000-1500m above sea level) consists of W-vergent reverse faults and some NNE open folds. The southern part of the Andean zone includes tight folds with box and kink geometries, related to thrusts at deeper levels. In the Extra-Andean zone, with maximum heights of 1500m, the deformation is less intense, and gentle folds deform the Upper Cretaceous sediments. An inherited Jurassic N-S extensional fault system imposed a strong control on this morphostructural zonation. Also the variation of the Austral Basin sedimentary thickness in the N-S direction seems to have influenced the structural styles of the outer fold and thrust belt. Those differences in sedimentary thickness may be related to S-dipping transfer zones associated to W-E Jurassic extension. In turn, the transfer zones may have been controlled by the N-vergent WNW, Dg1, Gondwanan structural fabric

    Backscattered electron images, X-ray maps and Monte Carlo simulations applied to the study of plagioclase composition in volcanic rocks

    Get PDF
    Zoning patterns in plagioclases are related to abrupt changes in the anorthite content along the crystal growing direction. Accurate characterization of these patterns by electron microprobe is useful to identify magma chamber processes such as recharge, mingling and whole-chamber overturn events. In this work, a new procedure to obtain high resolution quantitative maps of anorthite concentration in single plagioclase crystals is developed. The methodology consists in performing a calibration of backscattered electron images using quantitative X-ray maps. The ultimate resolution of charac- teristic X-rays and backscattered electron signals is studied by Monte Carlo simulation. The method is applied to characterize the chemical composition of a volcanic plagioclase from the Cerro Vilama, Argentina. The results obtained are more precise than the values given by the methods commonly used in the study of plagioclase composition, i.e. the classical profiling by electron microprobe point analysis or the modern backscattered electron image calibration by means of quantitative energy or wavelength dispersive X-ray analysis at a few selected points.Facultad de Ingeniería (FI)Laboratorio de Investigaciones de Metalurgia Física (LIMF)Centro de Investigación y Desarrollo en Ciencias Aplicadas (CINDECA

    Dual-readout Calorimetry

    Full text link
    The RD52 Project at CERN is a pure instrumentation experiment whose goal is to understand the fundamental limitations to hadronic energy resolution, and other aspects of energy measurement, in high energy calorimeters. We have found that dual-readout calorimetry provides heretofore unprecedented information event-by-event for energy resolution, linearity of response, ease and robustness of calibration, fidelity of data, and particle identification, including energy lost to binding energy in nuclear break-up. We believe that hadronic energy resolutions of {\sigma}/E ≈\approx 1 - 2% are within reach for dual-readout calorimeters, enabling for the first time comparable measurement preci- sions on electrons, photons, muons, and quarks (jets). We briefly describe our current progress and near-term future plans. Complete information on all aspects of our work is available at the RD52 website http://highenergy.phys.ttu.edu/dream/.Comment: 10 pages, 10 figures, Snowmass White pape

    Medical-grade silicone coated with rhamnolipid R89 is effective against Staphylococcus spp. Biofilms

    Get PDF
    Staphylococcus aureus and Staphylococcus epidermidis are considered two of the most important pathogens, and their biofilms frequently cause device-associated infections. Microbial biosurfactants recently emerged as a new generation of anti-adhesive and anti-biofilm agents for coating implantable devices to preserve biocompatibility. In this study, R89 biosurfactant (R89BS) was evaluated as an anti-biofilm coating on medical-grade silicone. R89BS is composed of homologues of the mono- (75%) and di-rhamnolipid (25%) families, as evidenced by mass spectrometry analysis. The antimicrobial activity against Staphylococcus spp. planktonic and sessile cells was evaluated by microdilution and metabolic activity assays. R89BS inhibited S. aureus and S. epidermidis growth with minimal inhibitory concentrations (MIC99) of 0.06 and 0.12 mg/mL, respectively and dispersed their pre-formed biofilms up to 93%. Silicone elastomeric discs (SEDs) coated by R89BS simple adsorption significantly counteracted Staphylococcus spp. biofilm formation, in terms of both built-up biomass (up to 60% inhibition at 72 h) and cell metabolic activity (up to 68% inhibition at 72 h). SEM analysis revealed significant inhibition of the amount of biofilm-covered surface. No cytotoxic effect on eukaryotic cells was detected at concentrations up to 0.2 mg/mL. R89BS-coated SEDs satisfy biocompatibility requirements for leaching products. Results indicate that rhamnolipid coatings are effective anti-biofilm treatments and represent a promising strategy for the prevention of infection associated with implantable devices

    Backscattered electron images, X-ray maps and Monte Carlo simulations applied to the study of plagioclase composition in volcanic rocks

    Get PDF
    Zoning patterns in plagioclases are related to abrupt changes in the anorthite content along the crystal growing direction. Accurate characterization of these patterns by electron microprobe is useful to identify magma chamber processes such as recharge, mingling and whole-chamber overturn events. In this work, a new procedure to obtain high resolution quantitative maps of anorthite concentration in single plagioclase crystals is developed. The methodology consists in performing a calibration of backscattered electron images using quantitative X-ray maps. The ultimate resolution of charac- teristic X-rays and backscattered electron signals is studied by Monte Carlo simulation. The method is applied to characterize the chemical composition of a volcanic plagioclase from the Cerro Vilama, Argentina. The results obtained are more precise than the values given by the methods commonly used in the study of plagioclase composition, i.e. the classical profiling by electron microprobe point analysis or the modern backscattered electron image calibration by means of quantitative energy or wavelength dispersive X-ray analysis at a few selected points

    Backscattered electron images, X-ray maps and Monte Carlo simulations applied to the study of plagioclase composition in volcanic rocks

    Get PDF
    Zoning patterns in plagioclases are related to abrupt changes in the anorthite content along the crystal growing direction. Accurate characterization of these patterns by electron microprobe is useful to identify magma chamber processes such as recharge, mingling and whole-chamber overturn events. In this work, a new procedure to obtain high resolution quantitative maps of anorthite concentration in single plagioclase crystals is developed. The methodology consists in performing a calibration of backscattered electron images using quantitative X-ray maps. The ultimate resolution of charac- teristic X-rays and backscattered electron signals is studied by Monte Carlo simulation. The method is applied to characterize the chemical composition of a volcanic plagioclase from the Cerro Vilama, Argentina. The results obtained are more precise than the values given by the methods commonly used in the study of plagioclase composition, i.e. the classical profiling by electron microprobe point analysis or the modern backscattered electron image calibration by means of quantitative energy or wavelength dispersive X-ray analysis at a few selected points.Facultad de Ingeniería (FI)Laboratorio de Investigaciones de Metalurgia Física (LIMF)Centro de Investigación y Desarrollo en Ciencias Aplicadas (CINDECA
    • …
    corecore