29 research outputs found

    Stromal Cell Contribution to Human Follicular Lymphoma Pathogenesis

    Get PDF
    Follicular lymphoma (FL) is the prototypical model of indolent B cell lymphoma displaying a strong dependence on a specialized cell microenvironment mimicking normal germinal center. Within malignant cell niches in invaded lymph nodes and bone marrow, external stimuli provided by infiltrating stromal cells make a pivotal contribution to disease development, progression, and drug resistance. The crosstalk between FL B cells and stromal cells is bidirectional, causing activation of both partners. In agreement, FL stromal cells exhibit specific phenotypic, transcriptomic, and functional properties. This review highlights the critical pathways involved in the direct tumor-promoting activity of stromal cells but also their role in the organization of FL cell niche through the recruitment of accessory immune cells and their polarization to a B cell supportive phenotype. Finally, deciphering the interplay between stromal cells and FL cells provides potential new therapeutic targets with the aim to mobilize malignant cells outside their protective microenvironment and increase their sensitivity to conventional treatment

    Designed Surface Topographies Control ICAM-1 Expression in Tonsil-Derived Human Stromal Cells

    Get PDF
    Fibroblastic reticular cells (FRCs), the T-cell zone stromal cell subtype in the lymph nodes, create a scaffold for adhesion and migration of immune cells, thus allowing them to communicate. Although known to be important for the initiation of immune responses, studies about FRCs and their interactions have been impeded because FRCs are limited in availability and lose their function upon culture expansion. To circumvent these limitations, stromal cell precursors can be mechanotranduced to form mature FRCs. Here, we used a library of designed surface topographies to trigger FRC differentiation from tonsil-derived stromal cells (TSCs). Undifferentiated TSCs were seeded on a TopoChip containing 2176 different topographies in culture medium without differentiation factors, then monitored cell morphology and the levels of ICAM-1, a marker of FRC differentiation. We identified 112 and 72 surfaces that upregulated and downregulated, respectively, ICAM-1 expression. By monitoring cell morphology, and expression of the FRC differentiation marker ICAM-1 via image analysis and machine learning, we discovered correlations between ICAM-1 expression, cell shape and design of surface topographies and confirmed our findings by using flow cytometry. Our findings confirmed that TSCs are mechano-responsive cells and identified particular topographies that can be used to improve FRC differentiation protocols

    Immunofibroblasts are pivotal drivers of tertiary lymphoid structure formation and local pathology.

    Get PDF
    Resident fibroblasts at sites of infection, chronic inflammation, or cancer undergo phenotypic and functional changes to support leukocyte migration and, in some cases, aggregation into tertiary lymphoid structures (TLS). The molecular programming that shapes these changes and the functional requirements of this population in TLS development are unclear. Here, we demonstrate that external triggers at mucosal sites are able to induce the progressive differentiation of a population of podoplanin (pdpn)-positive stromal cells into a network of immunofibroblasts that are able to support the earliest phases of TLS establishment. This program of events, that precedes lymphocyte infiltration in the tissue, is mediated by paracrine and autocrine signals mainly regulated by IL13. This initial fibroblast network is expanded and stabilized, once lymphocytes are recruited, by the local production of the cytokines IL22 and lymphotoxin. Interfering with this regulated program of events or depleting the immunofibroblasts in vivo results in abrogation of local pathology, demonstrating the functional role of immunofibroblasts in supporting TLS maintenance in the tissue and suggesting novel therapeutic targets in TLS-associated diseases

    Microenvironment signaling driving lymphomagenesis

    No full text
    International audiencePurpose of review - In addition to the recent progresses in the description of the genetic landscape of B-cell non-Hodgkin's lymphomas, tumor microenvironment has progressively emerged as a central determinant of early lymphomagenesis, subclonal evolution, drug resistance, and late progression/transformation. The purpose of this review is to outline the most recent findings regarding malignant B-cell niche composition and organization supporting direct and indirect tumor-promoting functions of lymphoma microenvironment. Recent findings - Lymphoma supportive niche integrates a dynamic and orchestrated network of immune and stromal cell subsets producing, with a high level of spatial and kinetic heterogeneity, extracellular and membrane factors regulating tumor migration, survival, proliferation, immune escape, as well as tumor microarchitecture, and mechanical constraints. Some recent insights have improved our understanding of these various components of lymphoma microenvironment, taking into account the mechanisms underlying the coevolution of malignant and nonmalignant cells within the tumor niche. Summary - Deciphering tumor niche characteristics, functions, and origin could offer new therapeutic opportunities through the targeting of pivotal cellular and molecular components of the supportive microenvironment, favoring immune cell reactivation and infiltration, and/or limiting tumor retention within this protective niche

    Mesenchymal stem cells rescue CD34+ cells from radiation-induced apoptosis and sustain hematopoietic reconstitution after coculture and cografting in lethally irradiated baboons: is autologous stem cell therapy in nuclear accident settings hype or reality?

    No full text
    International audienceAutologous stem cell therapy (ACT) has been proposed to prevent irradiated victims from bone marrow (BM) aplasia by grafting hematopoietic stem and progenitor cells (HSPCs) collected early after damage, provided that a functional graft of sufficient size could be produced ex vivo. To address this issue, we set up a baboon model of cell therapy in which autologous peripheral blood HSPCs collected before lethal total body irradiation were irradiated in vitro (2.5 Gy, D0 1 Gy) to mimic the cell damage, cultured in small numbers for a week in a serum-free medium in the presence of antiapoptotic cytokines and mesenchymal stem cells (MSCs) and then cografted. Our study shows that baboons cografted with expanded cells issued from 0.75 and 1 x 10(6)/kg irradiated CD34+ cells and MSCs (n=2) exhibited a stable long-term multilineage engraftment. Hematopoietic recovery became uncertain when reducing the CD34+ cell input (0.4 x 10(6)/kg CD34+ cells; n=3). However, platelet recovery was accelerated in all surviving cografted animals, when compared with baboons transplanted with unirradiated, unmanipulated CD34+ cells (0.5-1 x 10(6)/kg, n=4). Baboons grafted with MSCs alone (n=3) did not recover. In all cases, the nonhematopoietic toxicity remained huge. This baboon study suggests that ACT feasibility is limited

    Neutrophils trigger a NF-ÎșB dependent polarization of tumor-supportive stromal cells in germinal center B-cell lymphomas

    No full text
    International audienceBoth tumor-associated neutrophils (TAN) and cancer-associated fibroblasts (CAFs) display specific phenotypic and functional features and contribute to tumor cell niche. However, their bidirectional crosstalk has been poorly studied, in particular in the context of hematological malignancies. Follicular lymphomas (FL) and diffuse large B-cell lymphomas (DLBCL) are two germinal center-derived lymphomas where various cell components of infiltrating microenvironment, including TAN and CAFs, have been demonstrated to favor directly and indirectly malignant B-cell survival, growth, and drug resistance. We show here that, besides a direct and contact-dependent supportive effect of neutrophils on DLBCL B-cell survival, mediated through the BAFF/APRIL pathway, neutrophils and stromal cells cooperate to sustain FL B-cell growth. This cooperation relies on an overexpression of IL-8 by lymphoma-infiltrating stromal cells that could thereafter efficiently promote neutrophil survival and prime them to neutrophil extracellular trap. Conversely, neutrophils are able to activate stromal cells in a NF-ÎșB-dependent manner, inducing their commitment towards an inflammatory lymphoid stroma phenotype associated with an increased capacity to trigger malignant B-cell survival, and to recruit additional monocytes and neutrophils through the release of CCL2 and IL-8, respectively. Altogether, a better understanding of the lymphoma-supporting effects of neutrophils could be helpful to design new anti-tumor therapeutic strategie

    DC-SIGN expressing macrophages trigger activation of mannosylated IgM B-cell receptor in follicular lymphoma

    No full text
    International audienceFollicular lymphoma (FL) results from the accumulation of malignant germinal center (GC) B cells leading to the development of an indolent and largely incurable disease. FL cells remain highly dependent on B-cell receptor (BCR) signaling and on a specific cell microenvironment, including T cells, macrophages, and stromal cells. Importantly, FL BCR is characterized by a selective pressure to retain surface IgM BCR despite active class-switch recombination process, and by the introduction, in BCR variable regions, of N-glycosylation acceptor sites harboring unusual high-mannose oligosaccharides. However, the relevance of these two FL BCR features for lymphomagenesis remains unclear. In this study, we demonstrated that IgM(pos) FL B cells activated a stronger BCR signaling network than IgG(pos) FL B cells and normal GC B cells. BCR expression level and phosphatase activity could both contribute to such heterogeneity. Moreover, we underlined that a subset of IgM(pos) FL samples, displaying highly mannosylated BCR, efficiently bound DC-SIGN, which could in turn trigger a delayed but long-lasting BCR aggregation and activation. Interestingly, DC-SIGN was found within FL cell niche in situ. Finally, M2 macrophages induced a DC-SIGN-dependent adhesion of highly mannosylated IgM(pos) FL B cells and triggered BCR-associated kinase activation. Interestingly, pharmacological BCR inhibitors abolished such crosstalk between macrophages and FL B cells. Altogether, our data support an important role for DC-SIGN-expressing infiltrating cells in the biology of FL and suggest that they could represent interesting therapeutic target

    Galectin-1 is a powerful marker to distinguish chondroblastic osteosarcoma and conventional chondrosarcoma.

    No full text
    International audienceThe clinical management of osteosarcoma differs significantly from that of chondrosarcoma; therefore, it is extremely important to diagnose these 2 types of bone tumor accurately. In the absence of a specific marker, differential diagnosis by histochemistry is sometimes impossible, especially between chondroblastic osteosarcoma and conventional chondrosarcoma. We analyzed 165 bone sarcomas by immunohistochemical staining of tissue microarrays for expression of the galectin-1 (GAL1) lectin and by Western blot experiments. We found that GAL1 was abundant in normal human osteoblasts from benign proliferations and in osteosarcomas, including chondroblastic osteosarcomas, but not in chondrosarcomas. There was a highly significant statistical difference in the percentage of stained cells (P < 10(-4)) and in the staining intensity (P < 10(-3)) of chondroblastic osteosarcomas compared to conventional chondrosarcomas. This discriminatory potential of GAL1 staining for osteosarcoma-derived tumors was confirmed by Western blotting. We propose a diagnostic test for bone tumors that takes into account the optimal discriminative values for the percentage of cells stained and the intensity of staining. The positive and negative predictive values were 85.7% (trust interval of 63.7%-97%) and 90% (trust interval of 80%-95.9%), respectively, demonstrating the pertinence of the test. Altogether, our data indicate that GAL1 is a powerful diagnostic marker that distinguishes chondroblastic osteosarcomas from conventional chondrosarcomas
    corecore