12 research outputs found

    Description of novel capsule biosynthesis loci of Campylobacter jejuni clinical isolates from South and South-East Asia.

    No full text
    Campylobacter jejuni is a major cause of bacterial diarrhea worldwide and associated with numerous sequela, including Guillain-Barré Syndrome, inflammatory bowel disease, reactive arthritis, and irritable bowel syndrome. C. jejuni is unusual for an intestinal pathogen in its ability to coat its surface with a polysaccharide capsule (CPS). The genes responsible for the biosynthesis of the phase variable CPS is located in the hypervariable region of C. jejuni genome which has been used to develop multiplex PCR to classify CPS types based on the Penner serotypes. However, there still are non-typable CPS C. jejuni by the current multiplex PCR scheme. The application of the next generation sequencing and whole genome analysis software were used for the identification of novel capsule biosynthesis of C. jejuni isolates. Unique PCR primers were designed to identify these new capsule biosynthesis loci. The designed primers sets were combined in a new multiplex mix called epsilon. The unique sequences provide an additional information of the biosynthesis loci responsible for some of the common CPS sugars/residues such as heptose, deoxtyheptose and MeOPN among C. jejuni in this new group of CPS multiplex assay. This new primer complements the current C. jejuni multiplex capsule typing system and will help in identifying previously untypeable capsule locus of C. jejuni isolates

    The Polysaccharide Capsule of \u3ci\u3eCampylobacter jejuni\u3c/i\u3e Modulates the Host Immune Response

    Get PDF
    Campylobacter jejuni is a major cause of bacterial diarrheal disease worldwide. The organism is characterized by a diversity of polysaccharide structures, including a polysaccharide capsule. Most C. jejuni capsules are known to be decorated nonstoichiometrically with methyl phosphoramidate (MeOPN). The capsule of C. jejuni 81-176 has been shown to be required for serum resistance, but here we show that an encapsulated mutant lacking the MeOPN modification, an mpnC mutant, was equally as sensitive to serum killing as the nonencapsulated mutant. A nonencapsulated mutant, a kpsM mutant, exhibited significantly reduced colonization compared to that of wild-type 81-176 in a mouse intestinal colonization model, and the mpnC mutant showed an intermediate level of colonization. Both mutants were associated with higher levels of interleukin 17 (IL-17) expression from lamina propria CD4+ cells than from cells from animals infected with 81-176. In addition, reduced levels of Toll-like receptor 4 (TLR4) and TLR2 activation were observed following in vitro stimulation of human reporter cell lines with the kpsM and mpnC mutants compared to those with wild-type 81-176. The data suggest that the capsule polysaccharide of C. jejuni and the MeOPN modification modulate the host immune response
    corecore