86 research outputs found

    Local uniform stencil (LUST) boundary condition for arbitrary 3-D boundaries in parallel smoothed particle hydrodynamics (SPH) models

    Get PDF
    This paper presents the development of a new boundary treatment for free-surface hydrodynamics using the smoothed particle hydrodynamics (SPH) method accelerated with a graphics processing unit (GPU). The new solid boundary formulation uses a local uniform stencil (LUST) of fictitious particles that surround and move with each fluid particle and are only activated when they are located inside a boundary. This addresses the issues currently affecting boundary conditions in SPH, namely the accuracy, robustness and applicability while being amenable to easy parallelization such as on a GPU. In 3-D, the methodology uses triangles to represent the geometry with a ray tracing procedure to identify when the LUST particles are activated. A new correction is proposed to the popular density diffusion term treatment to correct for pressure errors at the boundary. The methodology is applicable to complex arbitrary geometries without the need of special treatments for corners and curvature is presented. The paper presents the results from 2-D and 3-D Poiseuille flows showing convergence rates typical for weakly compressible SPH. Still water in a complex 3-D geometry with a pyramid demonstrates the robustness of the technique with excellent agreement for the pressure distributions. The method is finally applied to the SPHERIC benchmark of a dry-bed dam-break impacting an obstacle showing satisfactory agreement and convergence for a violent flow.EPSRC, Reino Unido | Ref. EP/L014890/1Ministry of Education, Universities and Research, Italia | Ref. RBSI14R1GPXunta de Galicia | Ref. ED431C 2017/64Ministerio de Economía y Competividad | Ref. ENE2016-75074-C2-1-

    Local uniform stencil (LUST) boundary condition for arbitrary 3-D boundaries in parallel smoothed particle hydrodynamics (SPH) models

    Get PDF
    Abstract This paper presents the development of a new boundary treatment for free-surface hydrodynamics using the smoothed particle hydrodynamics (SPH) method accelerated with a graphics processing unit (GPU). The new solid boundary formulation uses a local uniform stencil (LUST) of fictitious particles that surround and move with each fluid particle and are only activated when they are located inside a boundary. This addresses the issues currently affecting boundary conditions in SPH, namely the accuracy, robustness and applicability while being amenable to easy parallelization such as on a GPU. In 3-D, the methodology uses triangles to represent the geometry with a ray tracing procedure to identify when the LUST particles are activated. A new correction is proposed to the popular density diffusion term treatment to correct for pressure errors at the boundary. The methodology is applicable to complex arbitrary geometries without the need of special treatments for corners and curvature is presented. The paper presents the results from 2-D and 3-D Poiseuille flows showing convergence rates typical for weakly compressible SPH. Still water in a complex 3-D geometry with a pyramid demonstrates the robustness of the technique with excellent agreement for the pressure distributions. The method is finally applied to the SPHERIC benchmark of a dry-bed dam-break impacting an obstacle showing satisfactory agreement and convergence for a violent flow

    Implicit iterative particle shifting for meshless numerical schemes using kernel basis functions

    Get PDF
    A novel particle shifting technique (PST) for meshless numerical methods is presented. The proposed methodology uses an implicit iterative particle shifting (IIPS) technique aiming to reduce the spatial particle’ anisotropy, which is associated with the discretization error in meshless numerical schemes based on kernel basis functions. The algorithm controls the particle spatial distribution through an implicit minimization problem, related to the particle concentration gradient and therefore, to the particles’ anisotropy. This results in accurate particle distributions, to demonstrate the effectiveness of the proposed method, the IIPS algorithm is tested within a smoothed particle hydrodynamics (SPH) framework, with static and kinematic cases, by examining the particle distributions and the corresponding spatial accuracy. Further, the computational cost of the proposed methodology is reported and it is shown that it introduces minimal overhead. Moreover, the simulations of the Taylor–Green vortex (TGV), employing a weakly-compressible SPH Navier–Stokes solver, confirmed the superior accuracy of the IIPS in comparison to existing explicit shifting approaches, in simulating internal flows

    A single-phase GPU-accelerated surface tension model using SPH

    Get PDF
    This paper presents an accelerated single-phase surface tension smoothed particle hydrodynamics (SPH) solver developed to run entirely on a graphics processing unit (GPU) capable of simulating millions of particles in three dimensions on a single GPU. The single-phase surface tension model is augmented with a contact line force to improve the prediction of the physics at the liquid-solid contact point. The surface tension model uses the modified dynamic boundary condition (mDBC) to impose no-slip conditions at the wall boundary. To enable simulations with millions of particles, the single-phase surface tension model has been implemented in the open-source SPH code DualSPHysics to exploit the GPU acceleration, paying special attention to the size of the kernel support and integration of the neighbour lists. The new scheme is validated using 2-D and 3-D test cases including drop deformation, drop oscillation, Rayleigh-Plateau instability and surface contact angles. The results show a good agreement with the analytical solutions with a standard spatial convergence behaviour. Profiling the new surface tension solver shows an additional computational complexity. The performance analysis shows that the new code has a speed up of up two orders of magnitude (x70-80) compared to the CPU-only code. Profiling the new CUDA kernels shows they have the near identical performance metrics with the main CUDA kernels in the original DualSPHysics solver

    DualSPHysics: from fluid dynamics to multiphysics problems

    Get PDF
    DualSPHysics is a weakly compressible smoothed particle hydrodynamics (SPH) Navier–Stokes solver initially conceived to deal with coastal engineering problems, especially those related to wave impact with coastal structures. Since the first release back in 2011, DualSPHysics has shown to be robust and accurate for simulating extreme wave events along with a continuous improvement in efficiency thanks to the exploitation of hardware such as graphics processing units for scientific computing or the coupling with wave propagating models such as SWASH and OceanWave3D. Numerous additional functionalities have also been included in the DualSPHysics package over the last few years which allow the simulation of fluid-driven objects. The use of the discrete element method has allowed the solver to simulate the interaction among different bodies (sliding rocks, for example), which provides a unique tool to analyse debris flows. In addition, the recent coupling with other solvers like Project Chrono or MoorDyn has been a milestone in the development of the solver. Project Chrono allows the simulation of articulated structures with joints, hinges, sliders and springs and MoorDyn allows simulating moored structures. Both functionalities make DualSPHysics especially suited for the simulation of offshore energy harvesting devices. Lately, the present state of maturity of the solver goes beyond single-phase simulations, allowing multi-phase simulations with gas–liquid and a combination of Newtonian and non-Newtonian models expanding further the capabilities and range of applications for the DualSPHysics solver. These advances and functionalities make DualSPHysics an advanced meshless solver with emphasis on free-surface flow modelling

    Smoothed Particle Hydrodynamics (SPH) modelling of transient heat transfer in pulsed laser ablation of Al and associated free-surface problems

    Get PDF
    A Smoothed Particle Hydrodynamics (SPH) numerical model is developed to simulate pulsed-laser ablation processes for micro-machining. Heat diffusion behaviour of a specimen under the action of nanosecond pulsed lasers can be described analytically by using complementary error function solutions of second-order differential equations. However, their application is limited to cases without loss of material at the surface. Compared to conventional mesh-based techniques, as a novel meshless simulation method, SPH is ideally suited to applications with highly non-linear and explosive behaviour in laser ablation. However, little is known about the suitability of using SPH for the modelling of laser-material interactions with multiple phases at the micro scale. The present work investigates SPH modelling of pulsed-laser ablation of aluminium where the laser is applied directly to the free-surface boundary of the specimen. Having first assessed the performance of standard SPH surface treatments for functions commonly used to describe laser heating, the heat conduction behaviour of a new SPH methodology is then evaluated through a number of test cases for single- and multiple-pulse laser heating of aluminium showing excellent agreement when compared with an analytical solution. Simulation of real ablation processes, however, requires the model to capture the removal of material from the surface and its subsequent effects on the laser heating process. Hence, the SPH model for describing the transient behaviour of nanosecond laser ablation is validated with a number of experimental and reference results reported in the literature. The SPH model successfully predicts the material ablation depth profiles over a wide range of laser fluences 4–23 J/cm2 and pulse durations 6–10 ns, and also predicts the transient behaviour of the ejected material during the laser ablation process. Unlike conventional mesh-based methods, the SPH model was not only able to provide the thermo-physical properties of the ejected particles, but also the effect of the interaction between them as well as the direction and the pattern of the ejection

    Modelling multi-phase liquid-sediment scour and resuspension induced by rapid flows using Smoothed Particle Hydrodynamics (SPH) accelerated with a Graphics Processing Unit (GPU)

    Get PDF
    AbstractA two-phase numerical model using Smoothed Particle Hydrodynamics (SPH) is applied to two-phase liquid-sediments flows. The absence of a mesh in SPH is ideal for interfacial and highly non-linear flows with changing fragmentation of the interface, mixing and resuspension. The rheology of sediment induced under rapid flows undergoes several states which are only partially described by previous research in SPH. This paper attempts to bridge the gap between the geotechnics, non-Newtonian and Newtonian flows by proposing a model that combines the yielding, shear and suspension layer which are needed to predict accurately the global erosion phenomena, from a hydrodynamics prospective. The numerical SPH scheme is based on the explicit treatment of both phases using Newtonian and the non-Newtonian Bingham-type Herschel-Bulkley-Papanastasiou constitutive model. This is supplemented by the Drucker-Prager yield criterion to predict the onset of yielding of the sediment surface and a concentration suspension model. The multi-phase model has been compared with experimental and 2-D reference numerical models for scour following a dry-bed dam break yielding satisfactory results and improvements over well-known SPH multi-phase models. With 3-D simulations requiring a large number of particles, the code is accelerated with a graphics processing unit (GPU) in the open-source DualSPHysics code. The implementation and optimisation of the code achieved a speed up of x58 over an optimised single thread serial code. A 3-D dam break over a non-cohesive erodible bed simulation with over 4 million particles yields close agreement with experimental scour and water surface profiles
    • …
    corecore