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a b s t r a c t 

This paper presents the development of a new boundary treatment for free-surface hydrodynamics using 

the smoothed particle hydrodynamics (SPH) method accelerated with a graphics processing unit (GPU). 

The new solid boundary formulation uses a local uniform stencil (LUST) of fictitious particles that sur- 

round and move with each fluid particle and are only activated when they are located inside a boundary. 

This addresses the issues currently affecting boundary conditions in SPH, namely the accuracy, robustness 

and applicability while being amenable to easy parallelization such as on a GPU. In 3-D, the methodology 

uses triangles to represent the geometry with a ray tracing procedure to identify when the LUST particles 

are activated. A new correction is proposed to the popular density diffusion term treatment to correct for 

pressure errors at the boundary. The methodology is applicable to complex arbitrary geometries without 

the need of special treatments for corners and curvature is presented. The paper presents the results from 

2-D and 3-D Poiseuille flows showing convergence rates typical for weakly compressible SPH. Still water 

in a complex 3-D geometry with a pyramid demonstrates the robustness of the technique with excellent 

agreement for the pressure distributions. The method is finally applied to the SPHERIC benchmark of a 

dry-bed dam-break impacting an obstacle showing satisfactory agreement and convergence for a violent 

flow. 

© 2019 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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1. Introduction 

Smoothed particle hydrodynamics (SPH) is becoming increas-

ingly popular to apply to a range of applications including hy-

draulics, biomedical and nuclear applications [5,14,41–43] . How-

ever, the robust numerical simulation of these applications is

highly dependent on the performance of the boundary conditions

employed within the SPH model. Since the early application of

SPH to free-surface flows and confined flows found throughout

engineering applications, boundary conditions have been the sub-

ject of intense scrutiny and development [49] . Despite this con-

certed effort by the SPH community, imposing boundary condi-

tions in SPH is still an open problem due to the Lagrangian na-

ture of SPH and the kernel based interpolation. This is recognised

by boundary conditions being identified as Grand Challenge in

the Smoothed Particle Hydrodynamics European Research Interest

Community (SPHERIC, http://www.spheric-sph.org ). 
∗ Corresponding author. 
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Methodologies for imposing the solid wall boundary conditions

an be grouped in three generic methodologies: repulsive func-

ions, fictitious particles and boundary integrals [50] . 

The widely used repulsive function approach, proposed by

onaghan [35] and Monaghan and Kajtar [36] describes the walls

y particles which exert a repulsive short-range force similar to a

eonard-Jones potential force on fluid particles. With this approach

-D and 3-D irregular geometries can be easily discretized, but the

ernel truncation near the wall is not explicitly treated and can

ntroduce non-negligible inaccuracies. 

Another widely used method to describe boundaries in SPH

1,7,27] is to use fictitious particles to represent the presence of

he boundary. This can take the form of mirror or ghost particles

s introduced by Randles and Libersky [39] . However, extending

he method to 3-D is challenging for irregular geometries. Alter-

atively, fictitious particles can take the form of stationary fluid

articles or similar [1,26] to whom appropriate properties are ap-

lied to enforce the physically correct conditions of impermeabil-

ty. An example of such an approach is the dynamic boundary

ondition (DBC) [7] currently implemented in the DualSPHysics

ode [8,9] which is suitable to reproduce complex geometries and
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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s ideally suited to parallelisation on heterogeneous architectures

uch as GPUs, but suffers from drawbacks such as over-dissipation

nd spurious pressure oscillation. The approach of Marrone et al.

27] which used interpolation of the particle properties inside the

uid domain transformed to the boundary particles reduces these

ffects, similar to the work of Adami et al. [1] . 

Another alternative is based on the work of Kulasegaram et al.

20] who proposed using an approximation to the surface inte-

ral to account for the truncated kernel. This introduces a cor-

ection factor into the SPH summations and additional terms in

he conservation equations in order to mimic the presence of the

oundary. The work of Kulasegaram et al. [20] uses an empirical

unction originating from variational principles to approximate the

orce. This concept was further developed in Bierbrauer et al. [4] ,

e Leffe et al. [10] , Marongiu et al. [25] , Ferrand et al. [12] and

ayrhofer et al. [29] avoiding the use of an empirical function.

hese methods have the advantage of restoring zero consistency

n the SPH interpolation and can reproduce to first order the phys-

cal conditions of Neumann wall boundary stress conditions and

ear wall shear stress for low Reynolds number flows. However, as

oted recently by Valizadeh and Monaghan [49] , the discretization

f complex 3-D geometries and/or multi-phase flows is challenging

28] . More recently using a cut-face process and improved second-

rder operators, Chiron et al. [6] have extended the 3-D surface

ntegral idea of Mayrhofer et al. [28] to the Riemann-based SPH

ormulation that employs an evolution equation for particle vol-

mes. 

None of the aforementioned approaches has emerged as be-

ng uniquely superior to other boundary techniques. Valizadeh and

onaghan [49] made a comparison of several boundary condi-

ions showing that for weakly compressible SPH, the formula-

ion of Adami et al. [1] is superior in terms of pressure fields

n the vicinity of the wall and stability. However, it is not clear

ow this can be extended to 3-D geometries and eventually to

igher order convergence. Whilst many of these boundary con-

itions work well for academic test cases with simple geome-

ry, their extension to arbitrarily complex 3-D geometries is not

traightforward. Furthermore, SPH is inherently computational ex-

ensive, therefore boundary conditions algorithms have to be

uitable to be accelerated by means of heterogeneous hardware

uch as GPUs. This motivates the methodology developed in this

aper. 

An interesting variant of the fictitious particle approach was

roposed by Ferrari et al. [13] , who similar to Yildiz et al. [51] ,

sed a local point symmetry method which is able to discretize ar-

itrarily complex geometries without introducing empirical forces.

his approach has some very clear theoretical attractions, namely

hat is it possible to generate an individual stencil for a particle

f any phase or identity such as in multi-phase flows, and should

e general to any geometry. However, when the method was ap-

lied to shallow water equations (SWE) [46] it was evident that

he original proposal of Ferrari et al. [13] was insufficient to com-

lete the missing kernel support and prevent particles from pen-

trating the boundary and an enhancement was needed. This was

odified again for the Navier–Stokes equations in 2-D [16] to ad-

ress issues in the inconsistencies in the moments of the kernel

nd their derivatives which are indicators of the accuracy of any

oundary condition. 

Although the virtual boundary particles methodology has merit

hen applied in 2-D, such an approach can be cumbersome in 3-

. Representation of 3-D domains using predefined virtual particles

ecomes computationally memory intensive since the 3-D domain

oundary triangles need to be discretized with geometrical points.

oreover, each fluid particle interacts with all the virtual particles

ithin its support and large numbers of virtual particles are re-

uired to represent the solid boundary in 3-D. 
During the development work presented in Vacondio et al.

46] and Fourtakas et al. [16] , it became apparent that another op-

ion existed to formulate a boundary condition that could fulfil all

he attractions of the Ferrari et al. [13] method but in a practi-

al manner. This idea is the focus of this paper which proposes

 new formulation of the local fictitious particles approach where

 local uniform stencil (LUST) follows each individual fluid parti-

le and only fictitious particles located within the region of the

oundary are activated. Boundary are represented by lines (in 2-D)

r triangles (in 3-D) without introducing virtual particle discretiza-

ion. The method is easy to extend to arbitrarily complex 3-D ge-

metries and has been accelerated for heterogeneous architectures

uch as GPUs. Approximate zero-th and first order consistency are

nsured by using a fully uniform fictitious particle stencil. The pro-

osed wall boundary condition is implemented in the open-source

PU code DualSPHysics [9] . 

This paper is structured as follows; In Section 2 , the governing

quations and the discretization of the standard weakly compress-

ble SPH equations is presented together with a correction for the

ensity diffusion term. This is followed by the description of the

ethodology of the LUST fictitious particles and the implemen-

ation on GPU. The accuracy and robustness of the new method-

logy is then assessed with several validation cases including the

oiseuille flow in 2-D and 3-D, a 3-D still water case with a pyra-

id in the domain and the SPHERIC benchmark 3-D dam break

mpact test. 

. SPH formalism 

In SPH, the kernel approximation of a scalar function f at posi-

ion x in the continuum domain is obtained as: 

f (x ) = 

∫ 
�

f ( x 

′ ) W (x − x 

′ , h ) d x 

′ , (1) 

here � is the volume of the integral, W is the smoothing kernel

unction, h is the smoothing length, used to define the influence

rea of the smoothing kernel function. In practical applications ker-

els have a compact support, meaning that W goes to zero at a

nite distance from x . In a discrete domain Eq. (1) can be approx-

mated with a summation: 

 

f (x ) 〉 = 

N ∑ 

j 

f j W (x − x j , h ) V j , (2) 

here f ( x j ) = f j is the value of the scalar function f at particle j with

osition x j and associated volume V j and N is the total number of

articles. The 〈 ... 〉 symbol denotes an SPH interpolation and will be

ropped for simplicity in the rest of the paper. 

Starting from Eq. (1) it is possible to derive the following Equa-

ion to approximate the derivative of gradient of a scalar function

 : 

f (x ) = 

∫ 
�

f ( x 

′ ) ∇W (x − x 

′ , h ) d x 

′ . (3) 

The discrete approximation of Eq. (3) is the following: 

 

∇ f (x ) 〉 = 

N ∑ 

j 

f j ∇W (x − x j , h ) V j . (4) 

A variety of kernels have been proposed in the literature

23] such as the Gaussian kernel, B-spline kernels, and the 5th-

rder Wendland kernel. The latter has been adopted in this paper

ue to its simplicity and low computational requirements: 

 (R ) = 

{
a d 

(
1 − R 

2 

)4 
( 2 R + 1 ) 0 ≤ R ≤ 2 

0 R > 2 

, (5) 

here a d = 7/(4 πh ) and a d = 21/(16 πh ), respectively, in a two- and

hree-dimensional space and R = | x – x ’ |/ h . More details on the SPH

ormulation and recent developments can be found in [50] . 
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3. SPH formulation 

3.1. Governing equations 

This section presents the governing equation in SPH form. The

Navier–Stokes equations can be written in a continuous Lagrangian

form for a weakly compressible fluid as { 

dρ
dt 

= −ρ∇ · u , 

ρ du 
dt 

= −∇P + ∇ · τ + ρg , 
(6)

where u is the velocity, ρ is the density, P is the pressure, τ is

the deviatoric component of the total stress and g is the gravity

acceleration. 

The continuity and momentum equations are coupled by means

of the Tait’s equation of state (EOS): 

P = 

c 2 0 ρ0 

γ

[ (
ρ

ρ0 

)γ

− 1 

] 
, (7)

with the polytrophic index γ = 7, c 0 = 

√ 

∂ P/∂ ρ is speed of sound

and subscript 0 denotes reference values. 

Herein we adopt the classical SPH formulation of Eq. (4) as

the aim of the present paper is to present a novel way to dis-

cretize wall boundaries and not investigate more recent formu-

lations now available in literature which address instabilities in

SPH [22,38,44,47,48] . Without such stabilisation, the test cases pre-

sented in Section 6 are more challenging and might indicate pos-

sible problems in the boundary treatment. 

Throughout this paper, i and j subscripts denote the interpo-

lated particle and its neighbours, respectively. The density evo-

lution and momentum of the particles follow the Navier–Stokes

equations [33] using the addition of the δ-SPH formulation of An-

tuono et al. [3] 

d ρi 

dt 
= 

N ∑ 

j 

m j u i j · ∇ W i j + δh c i 

N ∑ 

j 

ψ i j · ∇ W i j V j , (8)

d u i 

dt 
= −

N ∑ 

j=1 

m j 

(
P i + P j 

ρi ρ j 

+ 	i j 

)
∇ W i j + g i , (9)

d x i 

dt 
= u i , (10)

where the subscripts ij denote the difference in value f ij = f i - f j 
for a field variable f , hence u ij = u i - u j and x ij = x i - x j and m j

the mass of the neighbouring particle. In the dry-bed dam-break

impacting an obstacle test case, the artificial viscosity [34] ; Ferrari

et al. [13] has been used to stabilize the solution and provide an

artificial viscous force denoted as 	ij , 

	i j = 

{−απ c i j 

ρi j 

h u i j ·x i j 

x 2 
i j 

u i j · x i j < 0 

0 u i j · x i j ≥ 0 

, (11)

where απ is the free parameter, and the overbar denotes the av-

erage values of the i and j particles such that c̄ i j = 

1 
2 ( c i + c j ) and

ρ̄i j = 

1 
2 ( ρi + ρ j ) are the average speed of sound and density, re-

spectively. 

All other test cases use the Laplacian operator as suggested by

Morris et al. [37] to model the physical viscous stresses 

∇ · μi ∇ u i = 

N ∑ 

1 

m j ( μ j + μ j ) r i j · ∇ W i j 

ρ j (r 2 
i j 

+ η2 ) 
u i j , (12)

where η = 0.001 h to avoid singularity as r ij → 0. 

In the continuity equation the second term on the RHS is a dif-

fusion term added to prevent spurious oscillations in the density

field. 
The time integration method adopted is the symplectic

redictor-corrector scheme bounded by the CFL condition [35] . Fur-

her details on the time integration scheme can be found in Crespo

t al. [9] . 

.2. Improved density diffusion term for gravity driven flows 

The diffusion term in Eq. (8) , can take different forms accord-

ngly to the formulation adopted for ψ ij as clearly explained in An-

uono et al. [2] . For example Molteni and Colagrossi [32] suggested

hat, 

 i j = 2 

(
ρ j − ρi 

) x i j ∥∥x i j 

∥∥ , (13)

hereas later Antuono et al. [3] proposed the so-called δ-SPH for-

ulation, 

 i j = 

(
ρ j − ρi −

1 

2 

(∇ ρL 
j + ∇ ρL 

i 

)
· x i j 

)
x i j ∥∥x i j 

∥∥2 
, (14)

here ∇ρL 
j 

and ∇ρL 
i 

are the normalized gradients computed, re-

pectively, at particle i and j . In comparison with Eq. (13) , in

q. (14) high order terms are introduced in Eq. (14) by Antuono

t al. [3] , to ensure consistency at the free surface. Therefore, δ-

PH formulation can be successfully adopted for gravity dominated

ow (see Antuono et al. [2] and Green et al. [17] for a comprehen-

ive analysis). 

In the present work we introduce a different formulation for

he diffusion term of Eq. (8) , aiming at restoring consistency at the

ree surface avoiding to compute the density normalized gradients.

he key idea is to use the same formulation proposed by Molteni

nd Colagrossi [32] but substituting the dynamic density with the

otal one. Thus the term ψ ij takes the following form: 

 i j = 2 

(
ρD 

j − ρD 
i 

) x i j ∥∥x i j 

∥∥ , (15)

here the superscript D denotes the dynamic density or pressure.

ince ρD = ρT – ρH (where superscript T and H denote the total

nd hydrostatic component, respectively), Eq. (13) can be rewritten

n term of the hydrostatic and total parts as 

 i j = 2 

(
ρT 

ji − ρH 
i j 

) x i j ∥∥x i j 

∥∥ . (16)

In the context of the weakly compressible SPH, the equation of

tate relates the density to the total pressure at the particle loca-

ion. However, only the hydrostatic part of the pressure is needed.

sing Eq. (7) the hydrostatic density difference can be obtained by

H 
i j = ρ0 

⎛ 

⎝ 

γ

√ 

P H 
i j 

+ 1 

C B 
− 1 

⎞ 

⎠ . (17)

The term P H 
i j 

is simply the hydrostatic pressure difference of

article i and j , 

 

H 
i j = ρ0 g z i j , (18)

here z ij is the vertical distance between particle i and j and 

 B = 

c 2 0 ρ0 

γ
. (19)

In comparison with the formulation of the diffusive term pro-

osed by Molteni and Colagrossi [32] . Eq. (16) improves the be-

aviour of pressure near the wall boundaries, as demonstrated in

ection 6 , avoiding to compute the normalized density gradient.

owever, it must be noted that the formulation of Antuono et al.

3] of Eq. (14) is general and it can be adopted for any type of flow,
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Fig. 2. Local uniform stencil generation using triangulated surfaces in 3-D. (For in- 

terpretation of the references to colour in this figure, the reader is referred to the 

web version of this article.). 
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hereas the use of total density in the diffusive term of Eq. (15) is

xpected to work better than Eq. (13) only for gravity-dominated

ows. 

. Wall boundary conditions methodology 

.1. Wall representation using triangles 

The representation of the solid boundary line using SPH parti-

les is well documented in literature [49,50] . SPH particles located

n the boundary are either used as interpolation points or for geo-

etrical purposes. With the former approach the governing equa-

ions are approximated on the boundary particles whereas with

he latter approach line points serve the function of geometrical

oints for the generation of a set of fictitious particles within the

runcated kernel support of the solid boundary. 

The representation of the solid wall boundary using line

oints or virtual boundary particles has gained popularity recently

13,16,46] . The main advantage of this approach derives from the

ase that fictitious particles can be generated at runtime without

he need to predefine fictitious particles within the solid wall. Fur-

hermore, the ability to readily generate a local uniform stencil

ithin the solid boundary is beneficial satisfying the consistency

riteria associated with the kernel support resulting on zeroth and

rst order consistency for uniform fluid domains. Fig. 1 illustrates

he main mechanism of the virtual boundary particles methodol-

gy as proposed by Fourtakas et al. [16] . 

Herein, a different approach is proposed to represent the solid

oundary line but retaining the aforementioned advantages of the

irtual boundary particles methodology. In the proposed method,

oundaries are discretized by means of triangles (in 3-D) without

ntroducing virtual boundary particles. The triangulated surfaces

an be readily used in 3-D without special treatments when dis-

retizing arbitrary complex geometries. In this approach the dis-

retization of the solid boundary line is independent of the par-

icle resolution of the domain. In the absence of virtual particles,

he fully uniform fictitious stencil is translated according to the po-

ition of the fluid particle as shown in Fig. 2 . Each fluid particle

nteracts only with triangles located within its support by using

he ray casting algorithm [40] reducing the interaction drastically

hen generating fictitious particles. The mechanism used to com-

lete the truncated support near the boundary using the triangles

s described next. 
ig. 1. Local uniform stencil generation using virtual boundary particles in 2-D [16] . 
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.2. Local uniform stencil (LUST) 

The idea of a local point of symmetry fictitious particle gen-

ration mechanism is not new to SPH. In Ferrari et al. [13] , Va-

ondio et al. [46] and Fourtakas et al. [16] virtual particles are

sed to generate a set of uniform fictitious particles to complete

he truncated kernel support depending on the distance of the

uid particle to the solid boundary and thus maintain zero-th and

rst-order consistency for uniform particle resolutions. The authors

ave demonstrated that the zero-th and first-order consistency for

on-uniform particle resolutions is approximately satisfied. 

In contrast to the work of Fourtakas et al. [16] and Vacondio

t al. [46] where fictitious particles are generated depending on

he distance of the fluid particle to the solid boundary, in the new

cheme proposed herein, the use of virtual particles is replaced

ith a local uniform stencil that surrounds each fluid particle. The

nique stencil is generated for an arbitrary particle at the begin-

ing of the simulation and stored in memory. 

When the support of a fluid particle is truncated by a solid wall

epresented by triangles, fictitious particles within the LUST stencil

ocated within the fluid domain are discarded and only fictitious

articles located within the solid wall actively contribute to the

ummations in Eqs. (8) and (9) . Fig. 2 demonstrates a 3-D example

here a fluid particle (shown in blue) is located near a corner. The

articles shown in dark red are the fictitious particles belonging

o the LUST stencil that are located inside the boundary and will

herefore contribute to the summations as described below. 

The main difference with the previous methods is that the dis-

ance from the fluid particle to the fictitious particle is constant

nd depends on the particle spacing �x and kernel characteristics

nly, resulting in a uniform particle distribution within the solid

all. An example of a stencil generated for a fluid particle located

t a distance 2 �x > d > �x and �x > d > 0 is shown in Fig. 3 .

ote that, due to the particle regular distribution, the method is

ble to guarantee that the zeroth- and first-order moments are

qual to 1 and 0, respectively. Thus, the theoretical rate of conver-

ence can be achieved for the SPH operators [21] . Lind and Stansby

21] and later Fourtakas et al. [15] showed that maintaining a reg-

lar particle distribution improves the accuracy and the conver-

ence rate of SPH interpolation. Thus, herein we maintain the uni-

orm distribution near the boundary and non-uniform distribution

f fluid particles within the domain due to the Lagrangian nature

f the formulation. 

Each fictitious particle must be given values of particle proper-

ies in order to impose boundary conditions for the velocity and

ressure of the fluid at the boundary. To ensure mass conservation

nd satisfy Eq. (8) , the mass of the fictitious particle is equal to the
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Fig. 3. Fluid particle support generation for a particle located at a distance (a) 2 �x > x > �x and (b) �x > x > 0 away from the boundary surface. 
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mass of the interior particle. 

m f = m i , (20)

where the subscript f refers to the fictitious particle. 

To impose no-slip boundary conditions the velocity of the ficti-

tious particles u f is assigned according to Takeda et al. [45] method

by 

u f = ( u i − u v ) 
r v f 

r i v 
− u v , (21)

where the subscript v denotes the virtual wall, r vf is the perpendic-

ular distance between the fictitious particle and the boundary tri-

angle according to r vf = r vf •n where n is the normal to the surface

pointing into the fluid. Similarly, r iv is the perpendicular distance

between the fluid particle i and the boundary triangle as shown in

Fig. 4 and u f and u v is fluid particle velocity and the physical wall

velocity, respectively. 

A similar formulation to Eq. (20) is used for the pressure of the

fictitious particles with the added correction for the hydrostatic

pressure 

P f = P i + ρ0 g · r i f 

r v f 

r i v 
, (22)

which ensures that ∂ P/ ∂ n → ∞ as the particle distance r iv → 0 from

the solid wall is going to zero, imposing a no-penetration boundary

condition on the solid wall by a repulsive pressure. 

a  
Finally, the density of the fictitious particles is a function of the

ressure of Eq. (21) according to the equation of state Eq. (7) 

f = ρ0 
γ

√ 

P f 

C B 
+ 1 . (23)

In Table 1 the pseudocode of the LUST algorithm is shown. For

ach particle interaction the LUST stencil is moved accordingly to

he position of the fluid particle array pa[ i ] (line 2), then the

ummation over all active fictitious particles of the stencil starts

ith the loop at line 3. For each j th fictitious particle of the sten-

il the ray casting algorithm is used to assess whether it is inside

r outside the fluid region. If the j th particle is outside the fluid

egion, then physical quantities are assigned to the fictitious parti-

le (line 13) by Eqs. (19) –(22) and finally the contributions to the

ummation of Eqs. (8) and (9) of particle j are computed (line 14). 

It should be noted that within this work the boundary treat-

ent avoids the need to correct the kernel or gradient to account

or the missing kernel support. The applicability of the methodol-

gy is demonstrated for both 2-D and 3-D geometries. 

. Implementation on GPU 

Recently, the emergence of graphic processing units (GPUs) for

cientific computing has enabled acceleration of massively data-

arallel computations. The architecture of GPUs is particularly suit-

ble for SPH simulations as an energy efficient and cost effective
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Fig. 4. Fluid particle support generation and normal distances from the fluid particle to the virtual wall and fictitious particle. 

Table 1 

Pseudocode of the LUST algorithm. 

//loop over all fluid particles 

1: for i = 1, n_p 
2: call move_LUST_stencil(…) 

//loop over all fictitious particles of the LUST stencil 

3: for j = 1, n_fic 
//Ray casting algorithm 

4: foreach side in polygon: 
//p(j) is the j_th fictitious particle 

5: if ray_intersects_segment(pa[ j ],side) then 

6: count ← count + 1 
7: if is_odd(count) then 

8: return inside 
9: else 

10: return outside 
11: end if 

// fictitious particles outside the fluid region 

12: if (outside) then 

//compute mass, density and velocity for fictitious particle j 

13: call compute_physical_quantities(pa[ i ], pa[ j ]) 
//compute particle interaction between particle i and j 

14: call particle_interaction(pa[ i ],pa[ j ]) 
15: end if 

16: end for 

17: end for 
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Table 2 

Parameters of the SPH model for the 2-D 

Poiseuille flow configuration. 

Parameter Value 

Time integration Predictor corrector 

SPH Kernel Wendland 

Density diffusion No 

Courant number 0.2 

c s 0 10 m/s 

h / �x 2.0 

Viscosity model Morris operator 

μ= 0.1 Pa s 

Density ρ = 1 kg/m 

3 
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f  
ption [24] . The attraction comes from the parallel, multithreaded

any-core computing architecture of NVIDIA GPU cards which is

ell suited for HPC applications in general. Different SPH codes

ave been parallelized to exploit the computational power of GPUs

9,18] . 

The GPU memory is organized in several different types that

an be used by programmers to achieve high Computation to

lobal Memory Access (CGMA) ratio and thus high efficiency of the

olver. Variables which are stored in registers and in shared mem-

ry can be accessed with low latency in a highly parallel man-

er. While registers are private to each thread, shared memory can

e accessed by all threads that belongs to the same block. How-

ver, registers and shared memory sizes are limited, ranging from

 few bytes to kilobytes, respectively. On the other hand the global

emory is “off-chip” with slower communication. Finally, the con-

tant memory allows read-only access by the device and provides

aster and more parallel data access paths than the global memory.

herefore, appropriate implementation of the numerical model can

ave a big effect on the speedup achieved. 

As described in the Section 4 , each fluid particle has a prede-

ned stencil of fictitious particles. This predefined stencil moves
ith the fluid particle throughout the simulation but does not

hange during the simulation so it is created and stored in the

lobal GPU memory only once at the beginning. When comput-

ng acceleration for a fluid particle located close to the wall, a test

hould be performed to determine which fictitious particles in the

redefined stencil are located in the boundary region. To deter-

ine whether a fictitious particle lies in the boundary region, it

s necessary to check if the line segment connecting the fluid par-

icle to the fictitious one intersects any of the triangles that define

he wall. If so, the triangle with the intersection point closest to

he fluid particle is chosen. In any case, the ray casting algorithm

40] in 3-D is used to determine if the fictitious particle is valid, 

hether it lies in the boundary region or not. 

The number of triangles required to define complex geometries

an be significantly high for fine resolutions. In order to reduce

he number of triangles included in the test, the neighbour-list al-

orithm [11] used for the simulation is altered to include a list of

riangle neighbours in each neighbour-list cell. The list of triangles

n each cell is created and stored in the GPU memory at the be-

inning of the simulation. However, the list must be updated if the

oundary position undergoes displacement. Achieving an efficient

PU implementation for the LUST algorithm is a complex task due

o multiple loops in the code and memory accesses required to

etermine the fictitious particles. An option to increase the perfor-

ance is to store the relevant triangle information in shared mem-

ry but the limiting factor is the restricted size of the shared mem-

ry per multiprocessor (less than 64 Kbytes for compute capability

.0 or higher for NVIDIA GPUs) referred to as “OneStep”. 

Another option to increase the GPU efficiency is by splitting the

orce computation summation into two different CUDA kernels (re-

erred to as “TwoStep”) for each fluid particle. In the first CUDA
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Fig. 5. Speed up of DBC over LUST boundary wall boundary conditions. 

Fig. 6. Increasing factor in GPU memory compared to DBC. 

Table 3 

Parameters of the SPH model for the 3-D 

Poiseuille flow configuration. 

Parameter Value 

Time integration Predictor-corrector 

SPH Kernel Wendland 

Density diffusion No 

Courant number 0.2 

c s 0 3 m/s 

h / �x 2.0 

Viscosity model Morris operator 

μ= 10 −4 Pa s 

Density ρ = 1 kg/m 

3 

Table 4 

Parameters of the SPH model for the still 

water in 3-D including a pyramid configu- 

ration. 

Parameter Value 

Time integration Predictor-corrector 

SPH Kernel Wendland 

Density diffusion 0.1 

Courant number 0.2 

c s 0 58 m/s 

h / �x 2.0 

Viscosity model Morris operator 

μ= 0.01 Pa s 
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Fig. 7. 2-D Poiseuille flow: 
ernel, the boundary triangle that intersects the segment joining

he fluid and the fictitious particle is defined (if present). The in-

eraction with the fluid particle is then performed using the sec-

nd CUDA kernel. This process significantly reduces the code com-

lexity, decreases the register occupancy and minimizes irregular

emory access. Also, a combination of the “TwoStep” algorithm

ith the shared memory is possible. In the latter case, the GPU

emory increases since the triangle for each point of the prede-

ned stencil needs to be stored in the global memory for every

uid particle (referred to as “OneStepShared”, “TwoStepShared”).

esults for performance and memory usage have been analysed

sing a 3-D dam-break impact with obstacle test case (SPHERIC

enchmark test #2) presented in Section 6.3 . The results are com-

ared with the DBC [7,9] currently available in the open-source

ualSPHysics in Fig. 5 using an NVIDIA Tesla K20c GPU card. The

BC is faster than the new approach and the speedup is as seen

n Fig. 5 . Nevertheless, results obtained in Section 6 with LUST

n comparison to the DBC for the 3-D dam break show better

greement with the experimental data. On the other hand, the

UST boundary condition is also more memory-consuming than

BC, shown in Fig. 6 . Figs. 5 and 6 present results for the first

ersion (“OneStep”), with the improvement when using two steps

“TwoStep”) and with the use of shared memory (“OneStepShared”,

TwoStepShared”). 

. Test cases 

.1. Poiseuille 

.1.1. Poiseuille flow in 2-D 

To test the accuracy and convergence characteristics of the LUST

oundary conditions in the absence of gravity and its ability to im-

ose a non-slip boundary condition, a laminar Poiseuille flow is
velocity field at 15 s. 
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Fig. 8. 2-D normalised velocity field comparison with the analytical solution. 
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Fig. 9. L 2 error norm of the velocity at t = 10 s and Re = 10. 
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imulated. Initially, a 2-D case is performed with a Reynolds num-

er Re = 10 using open periodic boundaries. The channel width was

et to d = 1 m with a freestream velocity of U ∞ 

= 1.0 m/s. For this

est case, to obtain meaningful results the formulation of Morris

t al. [37] is used to model the viscous forces. The particle resolu-

ion for this test case is �x = 0.2, 0.1 and 0.05 m resulting in 110,

20 and 1640 particles, respectively. The same case has been sim-

lated by numerous researchers including Ferrand et al. [12] . The

dopted models and parameters for the SPH model are shown in

able 2 . 

Fig. 7 shows the velocity field for the test case with �x = 0.05 m

fter steady state has been reached at t = 15 s along with the ab-

olute velocity error. It is notable that the majority of the absolute

rror is not close to the wall boundaries but instead in the interior

uid domain. Note, that the SPH formulation that has been used in

his test case is the classical SPH formulation [34] without the use

f density diffusion so that any errors near the wall boundary are

vident which would not be visible otherwise by using a diffusion

erm or other density filtering techniques. 
Fig. 10. 3-D Hagen–P
Fig. 8 shows a comparison of the velocity profile at the middle

f the domain against the analytical solution. Similarly, the major-

ty of inaccuracy against the analytical solution is within the fluid

omain and not the wall boundaries. The L 2 norm of the velocity

rror of the 2-D Poiseuille flow are shown in Fig. 9 with a satisfac-

ory order of convergence of 1.55. 

.1.2. Poiseuille flow in 3-D 

Although the 2-D Poiseuille flow demonstrated good accuracy

nd satisfactory convergence, the purpose of the LUST methodol-

gy is its ability to handle arbitrary 3-D geometries such as sharp

orners as demonstrated in the 3-D still water test cases below and

urved boundaries. Therefore, the Hagen–Poiseuille 3-D flow which

equires a 3-D tube in the absence of gravity is an ideal test case.

he Reynolds number was set to Re = 5, with a channel diameter of

 = 1 × 10 −2 m with a freestream velocity of U ∞ 

= 5 × 10 −2 m/s. The

article resolutions for this test case are �x = 0.0 01, 0.0 0 05 and
oiseuille flow. 



354 G. Fourtakas, J.M. Dominguez and R. Vacondio et al. / Computers and Fluids 190 (2019) 346–361 

Fig. 11. Velocity profile comparison with the analytical solution of the Hagen–

Poiseuille flow. 

Fig. 12. L 2 error norm of the velocity at t = 15 s and Re = 5 for the 3-D Hagen–

Poiseuille flow. The order of convergence is approximately 1.12. 

Fig. 13. 3-D still water with pyramid at 10 s comparison of the normalised pressure and velocity field magnitude without and with the corrected density diffusion term for 

�x = 0.001 m. (For interpretation of the references to colour in this figure, the reader is referred to the web version of this article). 



G. Fourtakas, J.M. Dominguez and R. Vacondio et al. / Computers and Fluids 190 (2019) 346–361 355 

Fig. 14. 3-D still water with pyramid: profiles at ( x,y) = L / 
√ 

2 at 10 s for uncorrected and corrected density diffusion term. 
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Fig. 15. 3-D still water with pyramid: L 2 error norms with the GPU solver using the Morris operator for the viscosity calculations at 10 s for uncorrected and corrected 

density diffusion term. 

Fig. 16. Kinetic energy evolution time for the 3-D still water with pyramid. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 17. 3-D dam break (a) velocity and (b) pressure field at t = 0.3 s. 
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0.0 0 025 m resulting in 549, 5263 and 46,215 particles, respectively.

The test case configuration of the SPH model is shown Table 3 . 

A cross section of the velocity field of the laminar Hagen–

Poiseuille flow with a Reynolds number of Re = 5 is shown in

Fig. 10 for the simulation with �x = 0.0 0 025 m. The flow field near

the boundaries and within the domain is smooth without any spu-

rious velocities. A plot of the absolute error of the velocity mag-

nitude is shown in Fig. 10 (b) with less than 4% absolute error to

the freestream velocity. Also, a comparison of the velocity profile

with the analytical solution with satisfactory results is shown in

Fig. 11 followed by the convergence behaviour at steady state at

time t = 15 s with an order of convergence of 1.12 shown in Fig. 12 .

6.2. Still water in 3-D including a pyramid 

To evaluate the performance of the proposed methodologies in

presence of free-surface and gravity driven flow, the still water has
een simulated in a 3-D square box with a pyramid at the bottom

f the square tank. The pyramid was inserted to demonstrate the

bility of the methodology to deal with more complex geometries,

uch as discontinuous points with internal and external angles and

lopes within the computational domain. The classical SPH weakly

ompressible approach of Monaghan [34] with the corrected and

ncorrected density diffusion term of Section 3 . B. has been used

ogether with the formulation of Morris et al. [37] for the viscous

erm with μ= 0.01 Pa s. 

The dimensions of the container box are 1 × 1 × 1.2 m and a

quare base pyramid of sides 0.25 m with a height of 0.125 m
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Fig. 18. 3-D dam break (a) velocity and (b) pressure field at t = 0.6 s. 
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Fig. 19. 3-D dam break (a) velocity and (b) pressure field at t = 1.2 s. 

Fig. 20. 3-D dam break close-up near the obstacle for velocity t = 0.6 s. 

Table 5 

Parameters of the SPH model for the still 

water in 3-D including a pyramid configu- 

ration. 

Parameter Value 

Time integration Predictor-corrector 

SPH Kernel Wendland 

Density diffusion 0.1 

Courant number 0.2 

c s 0 46 m/s 

h / �x 1.3 

Viscosity model Artificial viscosity 

α = 0.001 

e  

d

nd π / 2 radians angle is centered at the middle of the domain

t x = (0.5, 0.5, 0.5) m. The water level elevation in the container

s H = 1 m with an initial water density of ρ0 = 10 0 0 kg/m 

3 . Only

ravity acts on the fluid with g = −9.81 m/s 2 . The particle resolu-

ions for this test case are �x = 0.04, 0.02 and 0.001 m resulting

n 12,061, 105,358 and 869,450 particles, respectively. Table 4 lists

he parameters adopted for the still water in 3-D including

 pyramid. 

Fig. 13 shows the velocity and pressure field of the domain

ross section at x = 0.5 m using the original formulation of the

ensity diffusion term ( Eq. (13) ) and the correction proposed in

ection 3.2 . based on dynamic density ( Eq. (15) ). The pyramid is

hown in red color in both images. Evidently results obtained with

he proposed correction are in agreement with the analytical solu-

ion and the velocity magnitude is reduced by an order of magni-

ude. 

The non-dimensional pressure and velocity profiles at

 x,y) = L / 
√ 

2 of the domain are shown in Fig. 14 for �x = 0.001 m.

learly, in Fig. 14 (a) the uncorrected density diffusion term shows

 dip in the pressure near the wall boundary on the order of 10%

f the total pressure that is eliminated in Fig. 14 (c) of Eq. (14) .

 comparison near the wall is provided in Fig. 14 (e) by zooming

nto the region near the wall boundary where the error of the

ncorrected density diffusion term is clearly visible. Similarly, the

uctuations in velocity shown in Fig. 14 . (d) Are reduced by the

se of the new density diffusion term correction. 

The convergence study on the velocity and pressure L 2 errors

s shown in Fig. 15 with the reasonable order of convergence of

pproximately 1.3 and 1.1, respectively, for the velocity and pres-

ure. Note that, although the order of convergence has improved

arginally by the corrected density diffusion term, the reduction

n error between the two density diffusion term formulations is

ignificant on the order of one magnitude. 

In addition to the pressure and velocity field and convergence

tudy, Fig. 16 shows the variation of the total kinetic energy of the

uid particles with time for �x = 0.001 m . Evidently, after the ini-

ial settling of the fluid due to the weakly compressible formula-

ion, the total kinetic energy decays rapidly. No significant differ-
nce between the corrected and uncorrected density diffusion term

iffusion was observed. 
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Fig. 21. 3-D dam break comparison with experimental data for pressures. 
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Fig. 22. 3-D dam break comparison with experimental data for water height. 
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Table 6 

Computational times for the 3-D Poiseuille, still water and dam break test cases, showing the cost per time step and particle per time step for all tested 

resolutions. 

Case Resolution (m) No. of particles Particle computational time per step (sec) Computational time per time step (sec) 

Poiseuille flow in 3-D 0.001 549 4.52E −05 0.044 

0.0 0 05 5263 3.31E −05 0.238 

0.0 0 025 46,215 1.50E −05 0.818 

Still water in 3-D 0.04 12,061 4.14E −07 0.005 

0.02 105,358 1.61E −07 0.017 

0.01 869,450 1.16E −07 0.101 

Dam break 3-D 0.002 83,692 1.91E −07 0.016 

0.001 669,735 1.32E −07 0.089 

0.0 0 05 5,384,940 4.25E −08 0.229 
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6.3. 3-D dam break (SPHERIC Benchmark Test Case #2) 

Although the still water test case is ideal to demonstrate the

ability of the LUST to deal with hydrostatic conditions and the

Poiseuille flow shows the noise of the domain and no-slip char-

acteristics imposed on the wall boundaries, SPH is ideal to simu-

late applications with for non-linear behaviour such as high-speed

impact flows and fragmentation in the presence of a free surface.

Thus, the SPHERIC benchmark #2 has been chosen to demonstrate

the ability of SPH in conjunction with the LUST wall boundaries to

deal with such demanding flows. 

The test case involves a breaking dam flow that further impacts

a structure downstream where pressure and water height gauges

have been placed. The reader is directed to the SPHERIC bench-

mark #2 test case [19] , for the geometrical of the configuration and

pressure and water height probes. The particle resolutions for this

test case are �x = 0.0 02, 0.0 01 and 0.0 0 05 m. Table 5 lists the pa-

rameters adopted for the still water for the SPHERIC benchmark

#2. In this case, we have used h / �x = 1.3 is standard practice, par-

ticularly for computationally expensive 3-D simulations using WC-

SPH such as used in DualSPHysics. 

Fig. 17 shows the velocity field of the domain before impact,

Fig. 18 at the impact and Fig. 19 after the impact of the break-

ing dam on the structure. Evidently, the velocity field is smooth

and no fluctuations are present in the fluid domain or near the

boundaries. However, more interesting are the flow features near

the structure impacted by the breaking dam. Fig. 20 shows a slight

separation of the near-boundary particles on the order of �x / 2.

This is due to the greater velocity of particles arriving from the

left flowing over particles with near zero velocity immediately ad-

jacent to the boundary. 

Without resolving the boundary layer (which would require a

computationally prohibitive resolution) a simulation with a finer

resolution would mitigate this effect. This is another advantage of

the LUST methodology by imposing a non-permeable wall bound-

ary with non-slip characteristics. Finally, a comparison of the pres-

sure against the experimental results is shown in Fig. 21 and Fig.

22 shows the water height probes against the experimental results

for all three different particle resolutions. The pressures and water

heights are well predicted especially as the resolution of the parti-

cle spacing increases which shows convergence to the experimen-

tal results with closer agreement to advanced multi-phase solver

of Mokos et al. [30] which highlights the improvements over pre-

vious wall boundary conditions used in DualSPHysics [9] . Results

in Fig. 21 (d) are consistent with other authors [9] for probe P4 lo-

cated on the top of the obstacle where the effects of air affect the

experimental and numerical results. 

To demonstrate the simulation runtimes, the computational

times for the 3-D cases are shown in Table 6 for the tested res-

olutions. By refining the particle resolution the computational cost

of a particle per time step is reducing and the computational time
er time step is increasing with expected rate. For the 3-D dam

reak which uses sufficient number of particles (5.3 million) for

he high resolution, scalability of the computational cost per time

tep is evident without reaching a plateau. 

. Conclusions and discussion 

This paper has presented a new boundary treatment for free-

urface hydrodynamics for SPH using a local uniform stencil (LUST)

f fictitious particles that surround and move with each fluid par-

icle. The LUST particles are only activated when they are located

nside a boundary. The methodology employs a ray tracing pro-

edure with triangles representing the geometry to identify when

he LUST particles are activated. The new solid boundary formula-

ion addresses the issues currently affecting boundary conditions

n SPH, namely the accuracy, robustness and applicability and is

traightforward to parallelize such as a GPU demonstrated here.

 new correction to the density diffusion term treatment corrects

or pressure errors at the boundary showing much closer agree-

ent than standard δ-SPH for hydrostatic pressure distributions

or the challenging case of still water in a complex 3-D geometry

ith a pyramid. The methodology is applicable to arbitrary com-

lex geometries without the need of special treatments for corners

nd curvature. Results from 2-D and 3-D Poiseuille flows shows

hat the method converges demonstrating the robustness of the

echnique with excellent agreement for the velocity profiles. The

ethod is finally applied to the SPHERIC benchmark of a dry-bed

am-break impacting an obstacle showing satisfactory agreement

nd convergence for a violent flow. 

The method now stands to open the route forward as a robust

nd easy-to-implement boundary treatment which will be of great

otential benefit to more complex SPH schemes such as variable

article resolution [47] and multi-phase flows [30,31] . Since the lo-

al uniform stencil is generated using the fluid’s smoothing length

 the generated support can in take any shape required by the p -

daptivity scheme (tetrahedral, hexahedral etc.). The resulting ficti-

ious support can be generated locally for any h without the need

f further kernel corrections. A variable resolution methodology

as not been investigated here as it is the focus of future research.
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