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This paper presents an accelerated single-phase surface tension smoothed particle hydrodynamics (SPH) solver 
developed to run entirely on a graphics processing unit (GPU) capable of simulating millions of particles in three 
dimensions on a single GPU. The single-phase surface tension model is augmented with a contact line force 
to improve the prediction of the physics at the liquid-solid contact point. The surface tension model uses the 
modified dynamic boundary condition (mDBC) to impose no-slip conditions at the wall boundary. To enable 
simulations with millions of particles, the single-phase surface tension model has been implemented in the open-

source SPH code DualSPHysics to exploit the GPU acceleration, paying special attention to the size of the kernel 
support and integration of the neighbour lists. The new scheme is validated using 2-D and 3-D test cases including 
drop deformation, drop oscillation, Rayleigh-Plateau instability and surface contact angles. The results show a 
good agreement with the analytical solutions with a standard spatial convergence behaviour. Profiling the new 
surface tension solver shows an additional computational complexity. The performance analysis shows that the 
new code has a speed up of up two orders of magnitude (x70-80) compared to the CPU-only code. Profiling the 
new CUDA kernels shows they have the near identical performance metrics with the main CUDA kernels in the 
original DualSPHysics solver.
1. Introduction

Surface tension is commonly found in a wide range of natural 
phenomena and industrial applications. The unbalanced forces of the 
molecules at the interface results in the surface tension force. The sur-

face tension force is one of the most important factors determining 
the behaviour of drops and bubbles. It can be neglected in many large 
length-scale problems but it is of great importance to the applications 
with sufficiently small characteristic length-scales such as microflu-

idic devices [3], inkjet printing [28], cavitation [6], drop dynamics 
[20,40,52] and spray behaviours in the engine [9].

Computational fluid dynamics (CFD) has proven its ability to use 
multi-phase surface tension models [38] couple with the interface track-

ing techniques such as volume-of-fluid (VOF) [17] and level-set (LS) 
[43]. On the other hand, in many applications modellers are often in-

terested in the behaviour of the flow of a single phase where the surface 
tension plays an important role and is essential for the flow behaviour. 
In addition, the single-phase model saves a large amount of computa-

tional costs compared to the multi-phase model as calculations among 
other phases are neglected.

✩ The review of this paper was arranged by Prof. Peter Vincent.

* Corresponding author.

An alternative to mesh-based methods is to use a meshless method 
such as smoothed particle hydrodynamics (SPH). SPH is a Lagrangian 
mesh-free method first proposed to solve non-axisymmetric astrophysi-

cal applications [14,25]. In the past two decades there has been signif-

icant progress developing SPH for engineering applications. It is now 
approaching a mature status as a CFD method with decades of devel-

opment due to its advantages for free-surface flows over the traditional 
mesh-based CFD methods [26,46,49]. In comparison to the aforemen-

tioned mesh-based schemes, SPH offers unique advantages as the inter-

face between different phases or components can be captured precisely 
through the use of the particles with different identities.

There have been multiple formulations proposed to include surface 
tension on SPH. Tartakovsky and Meakin [44] proposed the pairwise 
force (PF) model where the surface tension is regarded as an imbalance 
of molecular forces at the interface. This model is intuitive and easy 
to implement but it requires calibration on a case-by-case basis. Var-

ious researchers proposed different formulations for the inter-particle 
force which is attractive over a long distance and repulsive over a short 
distance to obtain more accurate results [2,22,53]. Subsequently, Tar-

takovsky and Panchenko [45] linked the macroscopic parameters such 
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as the surface tension coefficient and the contact angle to the PF model 
to avoid the need for calibration but the model still resulted in non-

physical pressure being generated on the interface. From the macro-

scopic view of surface tension, the continuum surface force (CSF) model 
[4], where the surface tension is rewritten into a volume force, was first 
tested by Morris [31] for multi-phase SPH. However, the curvature has 
proven difficult to predict due to the divergence of the normal direction 
on interface [18]. Hu and Adami [18] modified the formulations using 
the colour function to represent different phases and their gradients to 
compute normals and the interface curvature. Adami et al. [1] extended 
the model to be more accurate by using a weight colour function and 
a reproducing divergence approximation for the curvature. Following 
Adami et al. [1], Zöller et al. [54] proposed the density partitioned con-

tinuous surface-stress which could accurately predict the surface tension 
force with complex physics and is stable at a large time step for high 
density and viscosity ratio. The above-mentioned improvements of the 
CSF model are all related to a multi-phase SPH. This is computationally 
expensive since a large number of SPH particles are required to repre-

sent multiple phases. There have been some single-phase surface tension 
models developed using SPH [11,37,42]. Recently, Vergnaud et al. [47]

optimized the CSF model to be applied to the single-phase SPH and var-

ious modifications have been made to improve its accuracy with robust 
and accurate results. This avoids the computation expense of the larger 
number of particles required for the multi-phase approach. They also 
proposed a normal vector correction approach by enforcing the fluid to 
the equilibrium contact angle. In addition to the enforced normal vector 
approach, Huber et al. [19] derived a contact line force model based on 
the difference between dynamic contact angle and equilibrium contact 
angle, providing a more natural method of capturing the dynamic wet-

ting behaviour, which is of great importance in the dynamic behaviour 
of the droplet surface interaction applicable to various research areas 
such as drop manipulation.

DualSPHysics is an accurate and robust open-source solver based on 
SPH method to study free-surface flows [8,10]. The multi-phase model 
of DualSPHysics has implemented a surface tension model proposed 
by Hu and Adami [18], but the single-phase model still lacks an imple-

mentation. There are many single-phase applications that would benefit 
from the inclusion of a surface tension model including bubble coales-

cence [7], flow in the micro-channels [16] and heat transfer [50]. Given 
that the single-phase model requires less computation resource, it is nec-

essary to select and implement a single-phase surface tension model in 
a GPU-accelerated code.

This paper aims to develop an enhanced GPU-accelerated single-

phase surface tension model as initially proposed by Vergnaud et al. 
[47] in the absence of the stabilising Riemann solver formulation which 
is not conservative, by combining the contact line force model from 
Huber et al. [19] in conjunction with the modified dynamic bound-

ary condition (mDBC) no-slip wall boundary condition of English et al. 
[12]. The surface tension model is implemented in the DualSPHysics 
solver following rigorous validation of the model for 2-D and 3-D test 
cases. There are multiple challenges in developing the single-phase sur-

face tension model for GPU implementation. Firstly, the new algorithms 
will have an additional computational overhead when integrated into 
a pre-existing GPU-accelerated code, requiring special attention when 
using the neighbour lists efficiently while maximising GPU occupancy. 
Furthermore, there is the additional complication of how to use mixed 
precision variables on GPUs within the new model and understanding 
how this affects accuracy and how to achieve the maximum speed up 
given the extra computations required. This is particularly relevant to 
methods which invert matrices local to each particle as required for 
the eigenvalues in the surface tension model of Vergnaud et al. [47]

Further and as discussed above, the new model must ensure that the 
single-phase surface tension model captures all the physical processes 
of the applications.

This paper is organized as follows: In Section 2, the governing equa-
2

tions and the formulations for surface tension are introduced. In Sec-
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tion 3, the modifications made to the DualSPHysics code are described. 
This is followed by a number of test cases to validate the surface tension 
model including drop deformation, drop oscillation, Rayleigh-Plateau 
instability, and contact angle in Section 4. Finally, the new CUDA ker-

nels that have been implemented in the code are profiled and the results 
are compared to the original version of DualSPHysics using Nsight Com-

pute, a CUDA kernel profiler.

2. Numerical methods

2.1. SPH fundamentals

In SPH, the value of a field function 𝑓 (x) at point x is approximated 
by a local convolution of the function and a weighting kernel over the 
supporting domain expressed as,

< 𝑓 (x) > = ∫
Ω

𝑓 (x′)𝑊 (x − x′, ℎ)𝑑x′ (1)

where Ω is the supporting domain, 𝑊 denotes the smoothing kernel, ℎ
is a characteristic length called the smoothing length and < ... > denotes 
the continuous SPH interpolation.

The discretised form of Eq. (1) is written as,

𝑓 (x𝑖) =
∑
𝑗

𝑚𝑗

𝜌𝑗
𝑓 (x𝑗 )𝑊 (x𝑖 − x𝑗 , ℎ), (2)

where the subscripts 𝑖 and 𝑗 refer to the 𝑖th and 𝑗th particle, 𝑚 is the 
mass, 𝜌 the density and the < ... > has been dropped for simplicity.

To simplify the notation, Eq. (2) can be rewritten as,

𝑓 (x𝑖) =
∑
𝑗

𝑓𝑗𝑊𝑖𝑗𝑉𝑗 , (3)

where 𝑓𝑗 = 𝑓 (x𝑗 ) is the value of function 𝑓 on the 𝑗th particle, 𝑉𝑗 =
𝑚𝑗

𝜌𝑗

is the volume of the 𝑗th particle and 𝑊𝑖𝑗 =𝑊 (x𝑖 − x𝑗 , ℎ) is the kernel 
evaluated between particles 𝑖 and 𝑗.

Similarly, in continuous form, the gradient operator in SPH is writ-

ten as,

<∇𝑓 (x) > = ∫
Ω

𝑓 (x′)∇𝑊 (x − x′, ℎ)𝑑x′. (4)

This can be discretized as

∇𝑓 (x𝑖) =
∑
𝑗

𝑓𝑗∇𝑖𝑊𝑖𝑗𝑉𝑗 . (5)

Equation (5) is the most basic form of SPH gradient. A combination 
of other expressions is used in practice to ensure mass, momentum and 
energy conservation [29,30,48].

The quintic Wendland kernel [51] is used in this study due to its 
good robustness for the tensile instability [27]. The kernel is given by,

𝑊𝑖𝑗 = 𝛼𝐷(1 −
𝑟𝑖𝑗

2ℎ
)4(1 +

2𝑟𝑖𝑗
ℎ

) for 0 ≤ 𝑟𝑖𝑗 ≤ 2ℎ (6)

where 𝑟𝑖𝑗 = |r𝑖 − r𝑗 | denotes the distance between particle 𝑖 and 𝑗 and 
𝛼𝐷 is the normalization term for different dimensions where 𝛼𝐷 = 7

4𝜋ℎ2

in 2-D and 𝛼𝐷 = 21
16𝜋ℎ3 in 3-D.

2.2. Governing equations

The Lagrangian form of conservation of mass and momentum is writ-

ten as,

𝐷𝜌

𝐷𝑡
= −𝜌∇ ⋅ 𝐮,

𝐷𝐮 1 2
(7)
𝐷𝑡
= −

𝜌
∇𝑝+ 𝜈∇ 𝐮+ 𝐟𝑏𝑜𝑑𝑦,
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where u is the velocity, 𝑝 denotes the pressure, 𝜈 represents the kine-

matic viscosity and f𝑏𝑜𝑑𝑦 is the body force including surface tension 
force, contact line force and gravity.

2.3. SPH discretisation

Based on DualSPHysics formulation [10] and by replacing the vis-

cous term from Morris et al. [32], the corresponding SPH discrete form 
of Equation (8) is given by

𝐷𝜌

𝐷𝑡
= 𝜌𝑖

∑
𝑗

𝑚𝑗

𝜌𝑗
𝐮𝑖𝑗 ⋅∇𝑖𝑊𝑖𝑗 ,

𝐷𝐮𝑖

𝐷𝑡
= −

∑
𝑗

𝑚𝑗 (
P𝑖 + P𝑗

𝜌𝑖𝜌𝑗
)∇𝑖𝑊𝑖𝑗

+
∑
𝑗

m𝑗 (𝜈𝑖 + 𝜈𝑗 )𝐫𝑖𝑗 ⋅∇𝑖𝑊𝑖𝑗

𝜌𝑗 (|𝑟𝑖𝑗 |+ 0.001h2)
+ 𝐠+ 𝐟𝑠 + 𝐟𝑐𝑙𝑓 ,

(8)

where g is the gravitational force, f𝑠 denotes the surface tension force 
and f𝑐𝑙𝑓 represents the contact line force. The term 0.001ℎ2 aims to 
prevent the singularity when 𝑟𝑖𝑗 tends to zero.

The Tait equation of state is used to couple the density and pressure 
as follows,

p =
𝜌0c

2
0

𝛾

[( 𝜌𝑖

𝜌0

)𝛾

− 1
]

(9)

where 𝜌0 is the reference density, c0 the speed of sound and 𝛾 the poly-

tropic index which is taken as 7 for water.

2.4. Surface tension model

The continuum surface force (CSF) model is a widely used surface 
tension model in numerical simulation of fluid dynamics [4]. In the CSF 
model, the surface tension force per unit volume F𝑠 is transferred from 
a surface force to a volume force [4],

F𝑠 = f𝑠𝛿𝑠, (10)

where 𝛿𝑠 is a normalized function and f𝑠 is the force per unit area given 
as,

f𝑠 = −𝜎𝜅n̂, (11)

where 𝜎 is the surface tension coefficient, 𝜅 denotes the curvature of 
the interface and n̂ is the unit normal vector to the interface, where the 
hat symbol denotes the normalised vector.

In this work, a recently proposed single phase corrected-CSF (C-CSF) 
model [47] has been implemented in DualSPHysics and extended with a 
contact line model of Huber et al. [19] to capture the physics of liquid-

solid contact line more accurately.

2.5. Single-phase surface tension SPH formulation

According to the CSF model [4], the surface tension force F𝑠,𝑖 for 
each particle 𝑖 could be written as,

F𝑠,𝑖 = −𝜎𝜅𝑖n̂𝑖𝛿𝑠,𝑖, (12)

where the 𝜎 is the surface tension coefficient, 𝜅𝑖 is the curvature of 
the interface, n𝑖 denotes the normal to the interface and 𝛿𝑠,𝑖 presents 
the interfacial function. The unit vector normal to the interface from 
Vergnaud et al. [47] is expressed as,

n̂𝑖 = −
∇𝜆𝑖‖∇𝜆𝑖‖ , (13)

where

∇𝜆 =
∑

(𝜆 − 𝜆 )(𝕃 ∇𝑊 )𝑉 , (14)
3

𝑖

𝑗

𝑗 𝑖 𝑖 𝑖𝑗 𝑗
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and 𝜆𝑖 is the minimum eigenvalue of the matrix 𝕃−1
𝑖

. The 𝕃−1
𝑖

matrix is 
the inverse of correction matrix 𝕃𝑖 [47] defined as,

𝕃−1
𝑖

=
∑
𝑗

(r𝑗 − r𝑖)⊗∇𝑖𝑊𝑖𝑗𝑉𝑗 . (15)

The surface curvature of particle 𝑖 can be evaluated as,

𝜅𝑖 =
∑
𝑗

𝕃𝑖(n̂𝑗 − n̂𝑖) ⋅∇𝑊𝑖𝑗𝑉𝑗 . (16)

Generally, in the multi-phase CSF models [4], the interfacial function 
𝛿𝑠,𝑖 is usually determined by the gradient of colour function ∇c𝑖 defined 
as,

∇c𝑖 =
∑
𝑗

(𝑐𝑖 + 𝑐𝑗 )∇𝑊𝑖𝑗𝑉𝑗 , (17)

where 𝑐𝑖 and 𝑐𝑗 are values of the colour function on particle 𝑖 and 𝑗. In 
the single-phase model, the interfacial function is expressed as Equation 
(18) due to 𝑐𝑖 = 𝑐𝑗 = 1.

𝛿𝑠,𝑖 = ‖∇c𝑖‖ = 2‖∇𝑊𝑖𝑗𝑉𝑗‖. (18)

One challenge for a single-phase model is that the surface particle 
has a truncated kernel support with less neighbouring particles which 
results in increased error. Several corrections have been proposed to 
improve the accuracy in [47]. A coefficient 𝜆𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is used to test if 
the particle i has sufficient neighbouring particles, where the gradient 
of the normal, ∇𝜆𝑖, is modified as,

∇𝜆𝑖 =

{ ∑
𝑗 (𝜆𝑗 − 𝜆𝑖)(𝕃𝑖∇𝑊𝑖𝑗 )𝑉𝑗 if 𝜆𝑖 ≥ 𝜆𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑∑
𝑗 𝜆𝑗 (𝕃𝑖∇𝑊𝑖𝑗 )𝑉𝑗 otherwise,

(19)

where 𝜆𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is 0.7 in all cases.

For the particles located far from the surface, the value of ∇𝜆𝑖 tends 
to zero. Therefore, to ensure that ∇𝜆𝑖 on these particles is exactly zero 
and to reduce the computational cost, the normal is modified as,

n̂𝑖 =

{
− ∇𝜆𝑖||∇𝜆𝑖|| if ||∇𝜆𝑖|| > 𝜖

𝜆𝑖

h

0 otherwise,
(20)

where ℎ is the constant smoothing length and 𝜖 is a constant and is 
taken as 0.1 herein following Vergnaud et al. [47]. Similarly, a correc-

tion for the curvature is applied as,

𝜅𝑖 =
∑
𝑗

s𝑖𝑗 (n̂𝑗 − n̂𝑖) ⋅ (𝕃𝑖∇𝑊𝑖𝑗 )𝑉𝑗 , (21)

where

s𝑖𝑗 =

{
1 if n̂𝑖 ⋅ n̂𝑗 ≥ cos𝛼𝑡 and ||n̂𝑖|| > 0 and ||n̂𝑗 || > 0
0 otherwise,

(22)

where 𝛼𝑡 is the threshold defined as cos𝛼𝑡 = −1
2 and cos𝛼𝑡 = −1

3 in 2D 
and 3D, respectively. When considering the interfacial function, some 
particles located at the vertex of the geometry moving away from the 
fluid domain due to the singularity are observed in some simulations. 
To solve this problem, the following modification [47] was proposed:

𝛿𝑠,𝑖 = 2max(1, 𝜙𝑖)||∑
𝑗

∇𝑊𝑖𝑗𝑉𝑗 ||, (23)

where

𝜙𝑖 =
1

2
∑

𝑗 𝑊𝑖𝑗𝑉𝑗

. (24)

This correction increases slightly the surface tension force on the afore-

mentioned detached particles thereby preventing them from escaping 
in an unphysical manner.

For the cases including solid boundaries, the evaluation of the nor-
mal vector near the solid boundary should be corrected for better accu-
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Fig. 1. Definition sketch of the normal correction procedure near the contact 
line, adapted from [47].

racy. The definition sketch of the normal correction procedure near the 
contact line, which is adapted from [47], is shown in Fig. 1. Based on 
[47], the tangent vector t𝑏,𝑖 to the boundary which is also normal to the 
contact line is expressed as,

t𝑏,𝑖 =
n̂𝑖 − (n̂𝑖 ⋅ n̂𝑏,𝑖)n̂𝑏,𝑖||n̂𝑖 − (n̂𝑖 ⋅ n̂𝑏,𝑖)n̂𝑏,𝑖|| , (25)

where n𝑏,𝑖 is the approximate unit wall normal pointing away from the 
wall towards the fluid and computed for near-wall fluid particle 𝑖 via 
summation over the kernel gradient of nearby wall particles 𝑗 [5],

n̂𝑏,𝑖 =
∑

𝑗 ∇𝑊𝑖𝑗|∑𝑗 ∇𝑊𝑖𝑗 | . (26)

Then, the corrected normal n̂∗ for particle 𝑖 is defined as,

n̂∗
𝑖
= cos𝜃∗

𝑖
n̂𝑏,𝑖 + sin𝜃∗

𝑖
t𝑏,𝑖, (27)

where 𝜃∗
𝑖

is the corrected contact angle and expressed as,

𝜃∗
𝑖
=

{
𝜃𝑒 + (𝜃𝑖 − 𝜃𝑒)(𝑑𝑖∕𝑅)2 if 𝑑𝑖 < 𝑅

𝜃𝑖 otherwise,
(28)

where 𝑅 = 2ℎ is the kernel radius, 𝑑𝑖 is the distance from fluid particle 
𝑖 to the nearest boundary, 𝜃𝑒 denotes the equilibrium contact angle and 
𝜃𝑖 is the contact angle before correction defined as,

𝜃𝑖 = arccos(n̂𝑖 ⋅ n̂𝑏,𝑖). (29)

During the simulation, the computed normal n̂𝑖 is replaced by the 
corrected n̂∗

𝑖
before the computation of curvature.

Note that, in Vergnaud et al. [47], a Riemann solver formulation 
was necessary to maintain numerical stability in the droplet surface 
interaction. Herein, we forego a Riemann solver by using a contact line 
force model, the wall boundary conditions of English et al. [12] and a 
particle shifting technique to maintain a uniform particle distribution 
as detailed in the following sections.

2.6. Contact line force (CLF) model

Similar to the surface tension force, the volume formation of the 
contact line force F𝑐𝑙𝑓 is given as [19]:

F𝑐𝑙𝑓 = f𝑐𝑙𝑓 𝛿𝑐𝑙𝑓 , (30)

with

f𝑐𝑙𝑓 = 𝜎

[
𝑐𝑜𝑠(𝜃𝑒𝑞) + d̂𝑖 ⋅ n̂𝑖

]
�̂�𝑖, (31)

where the distance vector d𝑖 is written as:

d𝑖 =
∑
𝑗𝑏

𝑉𝑗𝑏
r𝑗𝑏𝑖𝑊𝑖𝑗𝑏

, (32)

where the subscript 𝑗𝑏 implies the summation is only applied over the 
boundary particles. The term 𝜈𝑖 is computed as:

𝜈𝑖 = |d𝑖|2n𝑖 − (d𝑖 ⋅ n𝑖)d𝑖. (33)
4

The interfacial function 𝛿𝑐𝑙𝑓 in (30) is given as:
Computer Physics Communications 295 (2024) 109012

𝛿𝑐𝑙𝑓𝑖
= −2d̂𝑖 ⋅

∑
𝑗

𝑉𝑗 (𝛿′𝑐𝑙𝑓𝑗 − 𝛿′
𝑐𝑙𝑓𝑖

)∇𝑖𝑊𝑖𝑗 (34)

with

𝛿′
𝑐𝑙𝑓𝑗

=

{
𝛿′
𝑐𝑙𝑓𝑖

if j ∈ fluid

0 if j ∈ boundary
(35)

and

𝛿′
𝑐𝑙𝑓𝑖

= �̂�𝑖 ⋅ n𝑖. (36)

2.7. Boundary conditions

The modified dynamic boundary conditions (mDBC) are used in this 
study due to its accurate estimation of density on boundary particle and 
the reduction of an unphysical gap between fluid and boundary parti-

cles in original DBC method [12]. In the mDBC method, a ghost particle 
is generated within the fluid for each boundary particle. The density and 
its gradient on the ghost particle are calculated by the linear interpo-

lation over the neighbouring fluid particles. This linear interpolation is 
the first-order consistent interpolation proposed by Liu and Liu [24]. In 
the mDBC, the density 𝜌𝑖 on boundary particle 𝑖 is obtained by extrap-

olating to the boundary particle node,

𝜌𝑖 = 𝜌𝑔 + (r𝑖 − r𝑔) ⋅
⎡⎢⎢⎢
𝜕𝑥𝜌𝑔
𝜕𝑦𝜌𝑔
𝜕𝑧𝜌𝑔

⎤⎥⎥⎥ , (37)

where 𝜌𝑔 and r𝑔 are the density and position of the ghost particle.

To apply the no-slip boundary condition, the velocity on boundary 
particle with a non-moving boundary is given as:

u𝑖 = −u𝑔, (38)

where the u𝑔 is the velocity of the ghost particle.

2.8. Particle shifting algorithm

As a particle-based and truly Lagrangian method, the SPH particles 
are free to move so the particles may clump together due to the small 
gradient of the kernel when the particles get close to each other. This 
particle clumping results in the irregular particle distribution and in-

troduces the error and numerical instability in the simulation. To avoid 
the particle clumping, Lind et al. [23] developed a particle shifting tech-

nique for free-surface flows (PST) where the particles are shifted after 
the properties on particles being updated to create a more uniform par-

ticle distribution. This PST is based on Fick’s law of diffusion where the 
particles are shifted from the areas of high concentration to that of low 
concentration, which gives,

J = −D′∇C, (39)

where J denotes the diffusion flux, D′ presents the diffusion coefficient 
and C is the concentration. The ∇C on the particle 𝑖 can be found in 
SPH form as,

∇C𝑖 =
∑
𝑗

V𝑗∇W𝑖𝑗 . (40)

The flux J is proportional to the velocity of particles so that the 
shifting distance 𝛿r𝑠 can be found as,

𝛿r𝑠 = −D∇C, (41)

where D is a new diffusion coefficient that incorporates both the diffu-

sion coefficient D′ and a constant of proportionality. This coefficient D
is determined by the von-Neumann stability criterion as,

h2

𝑑𝑡 ≤ 0.5

D
. (42)
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Table 1

Algorithm of the C-CSF model.

Algorithm: C-CSF Algorithm

1. Calculate the matrix on particles by 𝕃−1
𝑖

=
∑

𝑗 (r𝑗 − r𝑖)⊗∇𝑖𝑊𝑖𝑗𝑉𝑗

2. Obtain the minimum eigenvalue of particle 𝑖 𝜆𝑖

3. Determine the normal to the interface by

∇𝜆𝑖 =
∑

𝑗 (𝜆𝑗 − 𝜆𝑖)(𝕃𝑖∇𝑊𝑖𝑗 )𝑉𝑗 and n𝑖 = − ∇𝜆‖∇𝜆‖
4. Correct the normal for fluid-boundary interaction based on

𝜃∗
𝑖
=

{
𝜃𝑒 + (𝜃𝑖 − 𝜃𝑒)(𝑑𝑖∕𝑅𝑖)2 if 𝑑𝑖 < 𝑅𝑖

𝜃𝑖 otherwise,
5. Obtain the curvature and surface tension force by

𝜅𝑖 =
∑

𝑗 s𝑖𝑗 (n𝑗 − n𝑖) ⋅ (𝕃𝑖∇𝑊𝑖𝑗 )𝑉𝑗 and F𝜎
𝑖
= −𝜎𝜅𝑖n𝑖𝛿𝑠,𝑖

6. Transfer the surface tension force to the function

InteractionForcesFluid’ and KerInteractionForcesFluid in CPU and GPU code, respectively
Thus, based on Lind et al. [23], the particle shifting distance 𝛿r𝑠 can be 
found as,

𝛿r𝑠 = −𝐴h2∇C𝑖, (43)

where A is a case-dependent coefficient. The maximum allowable shift-

ing distance should be less than 0.2h to avoid the particle penetration 
into the wall particles.

In DualSPHysics, the default PST is adapted from Skillen et al. [41]

where the velocity of the particle is introduced to the coefficient D. The 
reason for using PST from Lind et al. [23] instead of the default one is 
that the interior particle might be shifted insufficiently due to its very 
low velocity such that the surface tension acts on the particle, resulting 
in clamping and numerical error.

2.9. Time stepping

The symplectic predictor-corrector method implemented in Dual-

SPHysics [10] is used. The first step in this time stepping method is to 
predict the dependent variables at half time-step 𝑡 + 𝑑𝑡∕2. Then, these 
variables are corrected using the predicted time derivatives at half time-

step 𝑡 +𝑑𝑡∕2. Finally, the corrected variables are used to update the new 
value at next time-step 𝑡 + 𝑑𝑡.

Based on the Courant-Friedrichs-Lewy (CFL) condition, the variable 
time step is obtained by the following criteria. The first one depends on 
the body force,

Δ𝑡𝑓 = 𝐶𝑓𝑚𝑖𝑛𝑖(
√

ℎ∕f 𝑖). (44)

In DualSPHysics, the time step constraint for artificial viscous dissipa-

tion is given by,

Δ𝑡𝑣𝑖𝑠 = 𝐶𝑣𝑖𝑠min
𝑖

h

c0 +max𝑗
|hu𝑖⋅r𝑖𝑗 ||r𝑖𝑗 |2+0.01h2

. (45)

Finally, the stability condition for surface tension is given by [47],

Δ𝑡𝑠𝑡 = 𝐶𝑠𝑡𝑚𝑖𝑛𝑖(

√
𝜌𝑖𝑅

2
𝑖

2𝜋𝜎|𝜅𝑖| ), (46)

where 𝐶𝑓 = 0.1, 𝐶𝑣𝑖𝑠 = 0.1 and 𝐶𝑠𝑡 = 0.05 are the Courant numbers used 
herein for each criterion. Thus, the variable time step is obtained by,

Δ𝑡 =𝑚𝑖𝑛(Δ𝑡𝑓 ,Δ𝑡𝑣𝑖𝑠,Δ𝑡𝑠𝑡). (47)

3. Implementation in DualSPHysics

As stated in the introduction, there are multiple challenges to im-

plement the unified SPH model accelerated on a GPU. Specifically, this 
relates to the creation of the new C++ functions and templates in the 
5

CPU code, and new CUDA kernels launched from within the existing 
Fig. 2. Flow diagram of CPU-GPU key steps in DualSPHysics [10].

CUDA code, such that the implementation of the new SPH formulation 
inherits the advantages of the highly-optimised DualSPHysics code.

As shown in Fig. 2, the key steps in DualSPHysics code are: (1) cre-

ating the neighbour list for particle 𝑖, (2) computing the forces among 
particles, (3) updating the whole system. In this work, the main modi-

fications of the code are in the second step as shown in Fig. 3.

In general, several options have been implemented to decide 
whether the surface tension model is activated. The constant param-

eters such as coefficient of surface tension are also applied as user-

assigned variables. As described in Fig. 3, the main modifications in 
the DualSPHysics code are four functions to calculate the relevant vari-

ables including the correction matrix 𝕃 and its minimum eigenvalue 
(Equation (15)), normal (Equation (13)), curvature (Equation (16)) and 
surface tension force (Equation (12)) before the force computation func-

tion InteractionForcesFluid in the CPU code and KerInteractionForcesFluid

in the GPU code. After initialisation, the GPU-version of DualSPHysics 
performs the entire simulation on the GPU, only offloading data for 
outputting purposes.

The surface tension force algorithm calculation is shown in pseudo 
code of Table 1. To simplify the expression, four new CUDA ker-

nels are named as Kernel-Matrix & MinimumEigenvalue (K-MEV), 
Kernel-Normal (K-N), Kernel-CorrectedNormal (K-CN) and Kernel-

SurfaceTension (K-ST), respectively. The K-MEV estimates the correc-

tion matrix 𝕃 and the corresponding minimum eigenvalue on each 
particle based on Equation (15). Two new arrays, one of tmatrix3f data 
type and one of float data type, are declared to store the matrix and the 
minimum eigenvalue. It is noted here that if the fluid-boundary inter-

action was considered, the matrix of boundary particles is also required 
so that the boundary particles within the kernel of fluid particle should 

have a full kernel. For example, as shown in Fig. 4, namely four layers of 
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Fig. 3. Modifications for the implementation of the surface tension model in DualSPHysics.
Fig. 4. Definition sketch of the support for the wall boundary particles, the 
black particle is the interpolating particle. Note, 8 layers of boundary particles 
are required to ensure accurate estimation of the eigen matrix and minimum 
eigenvalue.

boundary particles are needed for the case with the smoothing length 
ℎ = 2𝑑𝑝, but here eight layers of boundary particles are needed for 
the surface tension model to ensure the accurate estimation of matrix 
and minimum eigenvalue. Therefore, the DualSPHysics option cellfixed

should be activated in the .bat/.sh file to ensure the boundary parti-

cle has a full kernel because the original DualSPHysics only considers 
the boundary particles within the kernel of a fluid particle to reduce 
the computational cost. Another option for simplicity is to set the min-

imum eigenvalue of all the boundary particles to 1 which might result 
in errors as stated in Vergnaud et al. [47]. Considering the additional 
computation due to the extra layers of boundary particle required, the 
use of hardware acceleration is necessary.

The kernel K-N computes the normal vector on the fluid particles. 
It is noted that the extra layers of boundary particles are not required 
in this and the subsequent kernels. The gradient of the minimum eigen-

value is computed at first based on Equation (14). Then, the normal 
vector on each fluid particles can be obtained. The criterion of inter-

facial function 𝑔𝑖 in Equation (24) and the unit wall normal n𝑏,𝑖 in 
Equation (26) are also found at this step.

Next, the normal obtained at the last step is corrected by K-CN if 
the fluid-boundary interaction was considered in the case. Then, the 
curvature and surface tension force are obtained by K-ST. Finally, the 
surface tension force is transferred to the force computation function 
InteractionForcesFluid in the CPU code and KerInteractionForcesFluid in 
the GPU code and added to the momentum equation.

The implementation of the new surface tension model has made no 
6

changes to the memory layout of the code.
4. Results and discussion

In this section, several test cases are conducted to validate the C-

CSF model and CLF model in DualSPHysics. All the results are obtained 
based on GPU code. Following numerical tests, the results from the CPU 
and GPU versions of code are identical to within machine precision, 
thus CPU results will be omitted.

4.1. Drop deformation in 2-D and 3-D

Initially square (2-D) and a cubic (3-D) drops driven by the surface 
tension force are first investigated to verify the surface tension model. 
Three initial inter-particle distances are chosen as 𝑑𝑝 = 0.02 𝑚, 0.01 𝑚
and 0.005 𝑚, respectively, giving 441, 1681 and 6561 fluid particles 
for the 2-D case and 9261, 68921 and 531441 fluid particles for the 
3-D case, respectively. The density of fluid is 𝜌 = 1 𝑘𝑔∕𝑚3 and the dy-

namic viscosity is 𝜇 = 0.2 𝑃𝑎 ⋅ 𝑠. The surface tension coefficient is set to 
𝜎 = 1 𝑁∕𝑚. A square drop and a cubic drop with initial length 𝐿 = 0.4 𝑚
are placed in the centre of the domains of the 2-D and 3-D cases, respec-

tively. Based on the length 𝐿, the equilibrium radius of the final drop 
𝑅𝑒𝑞 is given as,

𝑅𝑒𝑞 =

{
𝐿∕

√
𝜋 in 2D

(3∕(4𝜋))1∕3𝐿 in 3D.
(48)

Then, the analytical pressure 𝑃𝑎𝑛𝑎𝑙𝑦 when the system reaches steady 
state is:

𝑃𝑎𝑛𝑎𝑙𝑦 =

{
𝜎∕𝑅𝑒𝑞 in 2D
2𝜎∕𝑅𝑒𝑞 in 3D.

(49)

In this validation, the equilibrium radii are 𝑅𝑒𝑞 = 0.2257 𝑚 and 𝑅𝑒𝑞 =
0.2481 𝑚 for the 2-D and 3-D cases, respectively. The analytical pres-

sures are 𝑃𝑎𝑛𝑎𝑙𝑦 = 4.43 𝑃𝑎 and 𝑃𝑎𝑛𝑎𝑙𝑦 = 8.06 𝑃𝑎 for the 2-D and 3-D 
cases, respectively. The particle shifting algorithm is not used in this 
case due to the low Reynolds number so that the particle clumping is 
reduced by the viscous diffusion during the simulation.

The particle position for both cases at 𝑡 = 0 𝑠 and 𝑡 = 1 𝑠 are shown 
in Fig. 5 and 6, respectively, where the term 𝑃𝑆𝑃𝐻 is the pressure pre-

dicted by SPH.

The pressure profiles at 𝑧 =𝑅𝑒𝑞 for the 2-D case and 𝑦 = 𝑧 =𝑅𝑒𝑞 for 
the 3-D case with three resolutions are shown in Fig. 7, where pressures 
are plotted against the non-dimensionalised distance from the centre of 
the drop 𝑟∗ = 𝑥∕𝑅𝑒𝑞 . It can be seen that the pressure on free-surface 
particles for 𝑑𝑝 = 0.005 𝑚 is around 2-4% greater than the analytical 
solution in the 2-D case and is 1% less in the 3-D case. The pressure 
profiles agree well with the analytical solution and converge towards 

the analytical solution with increasing resolution.
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Fig. 5. Particle position at 𝑡 = 0 𝑠, 𝑑𝑝 = 0.01 𝑚 for 2D and 3D drop deformation cases. One-eighth of the cube has been removed in 3D case to show the interior 
pressure distribution.

Fig. 6. Particle position at 𝑡 = 1 𝑠, 𝑑𝑝 = 0.01 𝑚 for 2D and 3D drop deformation cases. One-eighth of the sphere has been removed in 3D case to show the interior 
pressure distribution.
The convergence behaviours for 2D and 3D cases are shown in Fig. 8

where the 𝐿2 error norm for pressure is defined as,

𝐿2 =

√√√√∑
𝑖(𝑃𝑆𝑃𝐻 − 𝑃𝑎𝑛𝑎𝑙𝑦)2

𝑁𝑃 2
𝑎𝑛𝑎𝑙𝑦

, (50)

where the 𝑁 is the number of particles and 𝑃𝑎𝑛𝑎𝑙𝑦 is the analytical 
pressure. The convergence rates are approximately 1.61 for the 2-D case 
and 1.54 for the 3-D case, which are typical values for an SPH scheme 
with no higher-order treatment [33,46].

4.2. Drop oscillation

The surface tension model is further validated by a single drop os-

cillation case. In this case, a drop with radius 𝑅 = 0.2 𝑚 is generated. 
An initial velocity field u = (𝑢𝑥, 𝑢𝑧) is applied to the drop [1],

𝑢𝑥 = 𝑢0
𝑥

𝑟0
(1 − 𝑧2

𝑟𝑟0
)exp( −𝑟

𝑟0
)

𝑢𝑧 = 𝑢0
𝑧

𝑟0
(1 − 𝑥2

𝑟𝑟0
)exp( −𝑟

𝑟0
),

(51)

where 𝑟 is the distance between the point (𝑥, 𝑧) to the centre of the drop. 
The parameters 𝑢0 = 10 𝑚∕𝑠 and 𝑟0 = 0.05 𝑚 are chosen. The initial 
velocity field is shown in Fig. 9 where 𝑈 is the velocity magnitude. 
The density of fluid is also set to 𝜌 = 1 𝑘𝑔∕𝑚3. The dynamic viscosity is 
7

𝜇 = 0.05 𝑃𝑎 ⋅ 𝑠. The shifting algorithm from Lind et al. [23] is applied.
The snapshots of the motion at 𝑡 = 0.00𝑠, 0.16𝑠, 0.32 s and 0.48 s are 
shown in Fig. 10. The circular drop starts to oscillate under the effect 
of initial kinetic energy and tends to a stable circular drop with viscous 
dissipation. It should be noted that the final droplet drifts slightly due 
to the presence of parasitic velocities on the order of 0.005 m/s. The 
profiles of the mass centre of the upper right-square section of the drop 
in 𝑥 and 𝑧 direction with three resolutions are shown in the Fig. 11.

Next, the effect of the coefficient of surface tension on period time 
𝜏 is investigated. The analytical period time is expressed as [1],

𝜏 = 2𝜋
√

𝑅3𝜌

6𝜎
. (52)

Fig. 12 shows the computed period time with five coefficients of 
surface tension 𝜎 = 0.4, 0.6, 0.8, 1.0 and 1.2 𝑁∕𝑚 and three resolutions. 
For the smallest resolution 𝑑𝑝 = 0.005 𝑚, the largest deviation from the 
analytical solution is less than 2%.

4.3. Rayleigh-Plateau instability

The Rayleigh-Plateau instability is a common phenomenon in nature 
and industrial application. Specifically, the development of perturba-

tion on the surface of a liquid ligament induces the break-up of the 
filament and formation of sub-droplets. In this section, a 2-D Rayleigh-

Plateau instability case is conducted to validate the surface tension 

model.
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Fig. 7. Pressure profile at 𝑧 =𝑅 for 2D and 𝑦 = 𝑧 =𝑅 for 3D drop deformation cases.
𝑒𝑞

Fig. 8. Convergence behaviours for 2D and 3D drop deformation cases at 𝑡 = 1 s.

Fig. 9. Initial velocity field of the drop.

The numerical domain is a periodic and square domain with the 
length 𝐿 = 1 𝑚. The fluid column is placed in the centre of the domain 
with the same length 𝐿 = 1 𝑚 and radius 𝑟0 = 0.1𝐿 = 0.1 𝑚. To simulate 
the initial perturbation on the column, and initial sinusoidal velocity 
8

field u = (𝑢𝑥, 𝑢𝑧) is given as,
𝑒𝑞

𝑢𝑥 = 𝑢0sin
2𝜋𝑥
𝐿

,

𝑢𝑧 = 0,
(53)

where 𝑢0 is the initial velocity and equals to 1 𝑚∕𝑠.

From previous studies [13,36], the Weber number is 𝑊 𝑒 = 1.4
and the Reynolds number is 𝑅𝑒 = 18 in this case. The time is non-

dimensionlised as,

𝑡∗ = 𝑡√
𝜌𝑟20
𝜎

. (54)

Six resolutions are used which are 𝐿∕ℎ = 64, 128, 192, 256, 384, 512, 
giving 3328, 13312, 29568, 52736, 118272 and 209920 fluid particles, 
respectively and the smoothing length ℎ = 2𝑑𝑝. The density of fluid is 
𝜌 = 1000 𝑘𝑔∕𝑚−3. Thus, based on the value of 𝑊 𝑒 and 𝑅𝑒, the surface 
tension coefficient is 𝜎 = 71.429 𝑁∕𝑚 and the dynamic viscosity is 𝜇 =
5.556 𝑃𝑎 ⋅ 𝑠. The particle shifting algorithm from Lind et al. [23] is 
used. The evolution for resolution 𝐿∕ℎ = 512 is shown in Fig. 13 and 
the surface tracking measure tool in DualSPHysics is used to capture the 
interface.

The growth rate profile (𝑟𝑚𝑎𝑥 − 𝑟0)∕𝑟0 is used to describe the be-

haviour of the fluid ligament. The results are compared with the data 
from Olejnik and Szewc [36] as shown in Fig. 14. It can be seen that 
the results of lower resolutions (𝐿∕ℎ = 64 and 𝐿∕ℎ = 128) diverge from 
the results of finer resolution in the later stage which suggests a suffi-

ciently fine resolution is required for this case. It is found that all the 
results agree well with the data from [36] in the early stage but a de-

viation could be observed in the late stage. To improve the results, the 
renormalized gradient from Bonet & Lok [39] and the optimized parti-

cle shifting scheme adapted from Khayyer et al. [21] have been applied. 
The improved results are shown in the Fig. 15. It can be seen that the 
deviation has been decreased but still exists. This deviation is likely be 
due to a multi-phase surface tension model being used in [36] as the 
fluid particles on the free surface have a truncated kernel support in the 
single-phase model.

4.4. Tests for the evolution of a square drop on a solid surface

To further validate the capability of surface tension model on fluid-

boundary interaction, the case of an initially square drop on a solid 
boundary is conducted. As shown in Fig. 16, a fluid square is generated 
on a flat surface. Three initial inter-particle distances are used, which 
are 𝑑𝑝 = 0.0001 𝑚, 0.00005 𝑚 and 0.000025 𝑚, respectively, giving 441, 
1681 and 6561 fluid particles, respectively. The smoothing length is 
ℎ = 2𝑑𝑝. The length of initial square drop is 𝐿 = 0.002 𝑚. The initial ra-

dius of the equivalent semicircular drop can be determined noting the 
fluid square has the same area so that the equivalent initial radius of √

the semicircular drop is 𝑅𝑒𝑞 = 2𝐿2∕𝜋 ≈ 0.001596 𝑚. The properties 
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Fig. 10. Drop oscillation process at 𝑡 = 0.00 s, 0.16 s, 0.32 s and 0.48 s.
Fig. 11. The profile of centre of mass of the upper right-quarter section of the 
drop.

of the fluid particles are: coefficient of surface tension 𝜎 = 0.0728 𝑁∕𝑚, 
dynamic viscosity 𝜇 = 0.1 𝑃𝑎 ⋅ 𝑠 and reference density 𝜌 = 1000 𝑘𝑔∕𝑚3. 
The gravity force is not active. Five equilibrium contact angles are cho-

sen which are 𝜃𝑒𝑞 = 30𝑜, 60𝑜, 90𝑜, 120𝑜 and 150𝑜. The particle shifting 
algorithm from Lind et al. [23] is used.

The evolution of an square drop on a solid boundary with 𝜃𝑒𝑞 = 90𝑜
and 𝑑𝑝 = 0.000025 𝑚 is shown in Fig. 17. It can be seen that the surface 
tension model and the contact angle correction are effective. The distri-

bution of the inner fluid particles is smooth due to the particle shifting 
algorithm. However, the cluster of the outermost two layers of particles 
could be observed and there is a gap between the free-surface particles 
9

and the inner particles. This gap can cause the outermost layer of the 
Fig. 12. Convergence of oscillation period.

inner particles to be identified as free-surface particles and experience 
a surface tension force which is not physically correct. In addition, the 
cluster of the free-surface particles results in the pressure on boundary 
particles close to the corner of the drop being much greater than the 
analytical solution. Particles away from the fluid domain are also ob-

served in this region especially for the smaller contact angle such as 
𝜃 = 30𝑜.

The kinetic energy profile for each contact angle during the simula-

tion is shown in Fig. 18. It can be seen that the kinetic energy for each 
contact angle rises to its maximum value in the early stage due to the 
drop deformation driven by the surface tension force. Then, the kinetic 
energy decreases as the drop tends to equilibrium state. The kinetic en-
ergy does not tend to zero due to the intrinsic parasitic currents in the 
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Fig. 13. Evolution of Rayleigh-Plateau instability, 𝐿∕ℎ = 512.

Fig. 14. The growth rate profile for Rayleigh-Plateau instability. The compared Fig. 15. The growth rate profile for Rayleigh-Plateau instability using renor-
data is from Olejnik and Szewc [36]. malized kernel and optimised particle shifting scheme.
10
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Table 2

Information on devices.

GPU Quadro 
RTX 5000

CPU Intel Xeon 
Gold 6130

Compute Capability 7.5 Clock Speed 2.10 GHz

Global Memory 16 GB Cores 16

CUDA Cores 3072 Threads 32

Clock Rate 1.62 GHz RAM 256 GB

Memory Bandwidth 448 GB/s Memory Bandwidth 128 GB/s

TFLOPS (Single-precision) 11.2 ∖ ∖
ECC YES ∖ ∖
Fig. 16. Definition sketch: initial condition of drop contact angle case.

CSF model [15], which is a source of the error in the corner region. The 
cases with 𝜃 = 30𝑜 and 150𝑜 tend to have a relatively greater kinetic 
energy due to the error in the corner of the droplet.

The shape of the stable drop for cases with different contact angles 
is described as [35]:

𝑅𝑎𝑛𝑎𝑙𝑦 =𝑅𝑒𝑞

√
𝜋

2(𝜃𝑒𝑞 − sin(𝜃𝑒𝑞)cos(𝜃𝑒𝑞))
,

𝐻 =𝑅𝑎𝑛𝑎𝑙𝑦(1 − cos(𝜃𝑒𝑞)),

𝑊 𝐷 = 2𝑅𝑎𝑛𝑎𝑙𝑦sin(𝜃𝑒𝑞),

(55)

where 𝑅𝑎𝑛𝑎𝑙𝑦 is the analytical radius of the stable drop, 𝐻 is the height 
of the drop and 𝑊 𝐷 is the contact length between the drop.

The comparison of the height and width of the drop and the ana-

lytical solutions are shown in Fig. 19 and 20, respectively. From these 
two figures, a similar result could be observed as with the cases with 
𝜃 = 30𝑜 and 150𝑜 which have a larger deviation. There are two main 
sources of the error. First, the error around the corner of the drop: it 
is difficult for SPH to capture this contact region with insufficient res-

olution particles. Second, the method to measure the height and width 
inherently contains errors. In this case, the free-surface measure tool in 
DualSPHysics is used where the measure error is in the scale of O(ℎ). 
Although the free surface is captured, it is difficult to determine the 
contact point in the corner of the drop which also contributes to the 
error.

A further comparison of C-CSF and CLF models on the measurement 
of the contact angle is also conducted. The contact angle is measured 
by [19]:

𝜃𝐷𝐶𝐴 = 1∑
𝑗 𝛿𝑐𝑙𝑓𝑗

∑
𝑗

𝜃𝑗𝛿𝑐𝑙𝑓𝑗
, (56)

where 𝜃𝑗 = arccos(d̂𝑗 ⋅ n̂𝑗 ).
The absolute error under different equilibrium contact angles for 

different resolutions are shown in Fig. 21. Here, two different methods 
are applied: (1) C-CSF + CLF model shown in the solid lines (2) C-

CSF model shown in the dashed lines. It can be seen that the C-CSF 
+ CLF model generally has a smaller error for each resolution. This 
confirms that the additional contact line force model is required in the 
single-phase surface tension model of Vergnaud et al. to achieve closer 
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agreement with the reference value.
5. Performance analysis

In this section, the GPU performance of the new CUDA kernels is 
validated by two test cases. The first case is a 3-D contact angle case 
to demonstrate the ability of the GPU to speed up and profile the new 
CUDA kernels. The second case is a 3-D dam-break case in the example 
of original DualSPHysics to estimate the extra computational expense 
and speed up ability of the modified code and the original DualSPHysics 
code. The details of each case are illustrated in the following discussion.

An NVidia Quadro RTX 5000 GPU and Intel Xeon Gold 6130 CPU 
are used to run GPU and CPU simulations, respectively. Both are de-

signed for scientific computation and have been used to validate the 
hardware acceleration. The details of the devices are listed in Table 2. 
The maximum allowable number of particles in a single simulation case 
is around 36 million for the] modified single-phase GPU code.

The 3-D contact angle test case is used to investigate the speed-up of 
the GPU code. A cube with the initial length 𝐿 = 0.2 𝑚 is placed on the 
centre of the boundary. The density, dynamics viscosity and the surface 
tension coefficient are 𝜌 = 1 𝑘𝑔∕𝑚3, 𝜇 = 0.1 𝑃𝑎 ⋅ 𝑠 and 𝜎 = 1 𝑁∕𝑚, 
respectively. Eight initial inter-particle distances, where the number 
particles ranges from 10000 to 6 million, are used to test the speed-

up ability as shown in the Table 3. The value of speed-up is defined as 
the CPU time divided by the GPU time, 𝑆 = 𝑡𝐶𝑃𝑈

𝑡𝐺𝑃𝑈
. In order to reduce 

the computation time, the physical time for each test resolution is set 
to 0.0001 s. The steady state 3D contact angle case is shown in Fig. 22

with approximately 270,000 fluid particles. It can be observed that a 
few particles (around three particles at each corner) are out of the fluid 
domain due to the sharp geometry.

In the 3-D dam-break test case, to assess the extra computational cost 
of the new surface tension computations, the surface tension coefficient 
is set as 𝜎 = 0 𝑁∕𝑚 to eliminate the surface tension force. The speed 
up of original code (without C-CSF model) based on 3-D dam-break test 
case is also conducted. The other setup is the same as the example 3-D 
dam-break case. The resolutions of the 3-D dam-break case are shown 
in the Table 4.

The run-time comparison between the CPU and GPU is shown in 
Fig. 23. The blue solid line presents the speed up of modified code 
based on the 3-D contact angle and the red dashed line is the original 
code based on the 3-D dam-break case. It is found that the speed-up 
increases significantly under 1 million particles. Then, it increases at 
a lower rate and further tends to a constant for the finer resolutions. 
It clearly shows the advantage of using the hardware acceleration of-

fered by the GPU. The results also show that the ability of new CUDA 
kernels to speed up is stronger than that of original code. This might 
indicate that the CPU code for the surface tension model has room for 
improvement. Based on 3-D dam-break test case, the comparison of the 
run-time per physical second between the modified code (with the C-

CSF model) and the original code (without the C-CSF model) is shown 
in the Fig. 24. The runtime comparison between the modified code and 
the original code exhibits a range of behaviours, spanning from 1.8 at 
the lowest resolution to 3.7 at the highest resolution. This trend shows 
that the computational performance of the single-phase surface tension 

GPU code progressively diminishes with increasing resolution.
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Fig. 17. Evolution of an square drop on a solid surface where the contact angle 𝜃𝑒𝑞 = 90𝑜 and resolution 𝑑𝑝 = 0.000025 𝑚.

Fig. 18. Kinetic energy profiles for 5 contact angles during the simulation.

Table 3

The resolutions for the speed-up test case of the 3-D 
contact angle.

𝑑𝑝(𝑚) Fluid 
particles

Boundary 
particles

Total 
particles

0.02 1,331 3,844 5,175

0.01 9,261 14,884 24,145

0.005 68,921 58,564 127,485

0.004 132,651 91,204 223,855

0.0025 464,648 232,324 763,765

0.002 1,030,301 362,404 1,392,705

0.0016 2,000,376 565,504 2,565,880

0.00125 4,173,281 925,444 5,098,725

Fig. 19. Comparison of the height of drop with the analytical solution.

Table 4

The resolutions for the speed-up test case of the 3-D 
dam-break.

𝑑𝑝(𝑚) Fluid 
particles

Boundary 
particles

Total 
particles

0.04 9,360 26,143 35,503

0.02 79,380 126,392 205,772

0.01 652,212 489,324 1,141,536

0.008 1,290,096 760,348 2,050,444

0.0064 2,519,400 1,186,976 3,706,376

0.0056 3,760,011 1,532,218 5,292,229

The GPU profiling tool, NSight Compute, has been used to further 
investigate the specific performance metrics of the CUDA kernels in the 
12
GPU code, especially the new implemented kernels. The 3-D contact 
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Fig. 20. Comparison of the width of drop with the analytical solution.

Fig. 21. Absolute error of the contact angle for different equilibrium contact 

Fig. 22. A steady state particle distribution for 3-D contact angle case.

Fig. 23. Speed up between the CPU and GPU code for the 3-D contact angle test 
case. (For interpretation of the colours in the figure(s), the reader is referred to 
the web version of this article.)

Fig. 24. Comparison of run-time per physical second between the modified code 
13

angles (a) with CLF (b) without CLF.
 and original code for the 3-D dam-break test case.
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Table 5

Profiling data for the new implemented kernels based on 3-D contact-angle case (𝑑𝑝 = 0.00125 m) where 
the superscript ∗ denotes the result of the unmodified code.

CUDA Kernels K-MEV K-N K-CN K-ST KerFluid/* KerBound/*

Duration (ms) 42.23 53.50 0.06 54.16 70.69/(70.23*) 0.411/(0.403*)

Compute Throughput (%) 72.73 78.66 19.39 80.66 81.12/(81.19*) 61.55/(62.53*)

Memory Throughput (%) 33.77 33.44 87.10 40.02 25.9/(25.9*) 30.81/(31.26*)

L2 Hit Rate (%) 91.51 88.57 9.36 88.54 86.61/(86.99*) 68.18/(68.68*)

Achieved Occupancy (%) 96.72 96.44 78.39 95.51 95.47/(95.51*) 82.81/(83.03*)

Average Active Threads Per Warp 30.95 30.86 25.08 30.56 30.55/(30.12*) 26.5/(24.98*)

No Eligible (%) 27.92 27.16 89.05 19.28 29.84/(29.76*) 33.2372/(33.12*)

TFLOP/s (single-precision) 3.111 2.720 0.581 2.379 2.457/(2.473*) 2.384/(2.43*)

Registers Per Thread 52 64 28 62 66/(59*) 45/(45*)

Table 6

Profiling data for the new implemented kernels based on 3-D dam-break case (𝑑𝑝 = 0.0056 m) where the 
superscript ∗ denotes the result of the unmodified code.

CUDA Kernels K-MEV K-N K-CN K-ST KerFluid/* KerBound/*

Duration (ms) 24.87 31.35 0.059 30.44 64.27/(63.92*) 1.45/(1.44*)

Compute Throughput (%) 72.33 78.07 48.76 81.94 80.94/(80.91*) 70.71/(70.57*)

Memory Throughput (%) 32.66 32.41 83.31 40.33 26.13/(26.12*) 32.45/(32.38*)

L2 Hit Rate (%) 88.94 84.96 1.18 84.06 86.02/(87.03*) 76.36/(76.39*)

Achieved Occupancy (%) 96.94 97.11 82.34 96.18 95.75/(95.77*) 90.83/(90.94*)

Average Active Threads Per Warp 31.02 31.08 26.35 30.78 29.29/(29.29*) 27.44/(23.28*)

No Eligible (%) 27.20 26.28 89.48 17.94 29.63/(29.62*) 23.28/(28.11*)

TFLOP/s (single-precision) 3.237 2.841 0.207 2.502 2.470/(2.482*) 2.53/(2.54*)

Registers Per Thread 52 64 28 62 66/(59*) 45/(45*)
angle case with 𝑑𝑝 = 0.00125 𝑚 (results shown in Table 5) and the 3-D 
dam-break case with 𝑑𝑝 = 0.0056 𝑚 (results shown in Table 6 are used 
and the kernels at the first time step are profiled. The CUDA kernel 
KerInteractionForcesFluid and KerInteractionForcesBound have been ab-

breviated as KerFluid and KerBound, respectively, and the superscript ∗
denotes the result of the unmodified code. The performance metrics on 
each main CUDA kernel shown in the both tables includes [34]: (1) Du-

ration, refers to the length of time that a given kernel or function takes to 
execute on the GPU. (2) Compute Throughput, refers to the rate at which 
a kernel or function is able to perform computations on the GPU. (3) 
Memory Throughput, refers to the rate at which data can be transferred 
between the GPU’s memory and the CPU’s memory. (4) L2 Hit Rate, the 
percentage of memory access requests that find the required data in the 
Level 2 (L2) cache of a CPU (5) Achieved Occupancy, measures the per-

centage of hardware resources on the GPU that are being utilized by a 
kernel. (6) Average Active Threads Per Warp, measures the average num-

ber of threads that are active in a warp at any given time during the 
execution of a kernel. (7) No Eligible, indicates that no eligible device 
was found that can execute the CUDA kernel; (8) TFLOP/s, stands for 
trillion floating point operations per second; (9) Registers Per Thread, 
measures the amount of register memory allocated to each thread in a 
CUDA kernel.

It is shown that the new CUDA kernels including computation 
among fluid particles contribute to the time consumption. It is also 
found that each new CUDA kernel has near identical performance met-

rics compared to the KerFluid and KerBound except the K-CN, which is 
the normal correction. For K-CN, the performance metric ‘TFLOP/s’ is 
around 14-18 times lower than other kernels and the performance met-

ric ‘No Eligible’ hits 90%. Although K-CN accounts for 0.1% of the time 
among these kernels, it is necessary to optimize the code for this part. 
It also found that the modified and unmodified codes have the near 
identical performance metrics on CUDA kernels KerFluid and KerBound.

6. Conclusion

In this work, an accurate and robust single-phase surface tension 
model has been developed in the open-source SPH code DualSPHysics. 
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The single-phase surface tension model has been extended with the 
addition of a contact line force. Several test cases including drop defor-

mation, drop oscillation, Plateau-Rayleigh instability and contact angle 
have been conducted. It is shown a good agreement between the results 
and the analytical solutions. The contact line force model provides a 
slightly more accurate estimation on the contact angle. The new CUDA 
kernels have been profiled to provide a more detail information on the 
run time. It is shown that the ability of the new kernels to speed-up is up 
to 80 compared to the CPU version based on the contact angle case and 
is larger than the original code whose speed-up is around 65-70 based 
on the 3-D dam-break case. In addition, each kernel has a near identical 
performance metrics compared to the main kernel in the original code 
except the kernel to correct the normal.
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