189 research outputs found

    MIMAC: MIcro-tpc MAtrix of Chambers for dark matter directional detection

    Full text link
    Directional detection of non-baryonic Dark Matter is a promising search strategy for discriminating WIMP events from neutrons, the ultimate background for dark matter direct detection. This strategy requires both a precise measurement of the energy down to a few keV and 3D reconstruction of tracks down to a few mm. The MIMAC (MIcro-tpc MAtrix of Chambers) collaboration has developed in the last years an original prototype detector based on the direct coupling of large pixelized micromegas with a special developed fast self-triggered electronics showing the feasibility of a new generation of directional detectors. The first bi-chamber prototype has been installed at Modane, underground laboratory in June 2012. The first undergournd background events, the gain stability and calibration are shown. The first spectrum of nuclear recoils showing 3D tracks coming from the radon progeny is presented.Comment: Proceedings of the 4th International Conference on Directional Dark Matter Detection CYGNUS2013, held in Toyoma (Japan), June 201

    The seismic signature of Upper‐Mantle Plumes: application to the Northern East African Rift

    Get PDF
    Several seismic and numerical studies proposed that below, some hotspots upper‐mantle plumelets rise from a thermal boundary layer below 660 km depth, fed by a deeper plume source. We recently found tomographic evidence of multiple upper‐mantle upwellings, spaced by several 100 km, rising through the transition zone below the northern East African Rift. To better test this interpretation, we run 3‐D numerical simulations of mantle convection for Newtonian and non‐Newtonian rheologies, for both thermal instabilities rising from a lower boundary layer, and the destabilization of a thermal anomaly placed at the base of the box (700–800 km depth). The thermal structures are converted to seismic velocities using a thermodynamic approach. Resolution tests are then conducted for the same P and S data distribution and inversion parameters as our traveltime tomography. The Rayleigh Taylor models predict simultaneous plumelets in different stages of evolution rising from a hot layer located below the transition zone, resulting in seismic structure that looks more complex than the simple vertical cylinders that are often anticipated. From the wide selection of models tested, we find that the destabilization of a 200 °C, 100 km thick thermal anomaly with a non‐Newtonian rheology, most closely matches the magnitude and the spatial and temporal distribution of the anomalies below the rift. Finally, we find that for reasonable upper‐mantle viscosities, the synthetic plume structures are similar in scale and shape to the actual low‐velocity anomalies, providing further support for the existence of upper‐mantle plumelets below the northern East African Rift

    MIMAC : A micro-tpc matrix for directional detection of dark matter

    Full text link
    Directional detection of non-baryonic Dark Matter is a promising search strategy for discriminating WIMP events from background. However, this strategy requires both a precise measurement of the energy down to a few keV and 3D reconstruction of tracks down to a few mm. To achieve this goal, the MIMAC project has been developed. It is based on a gaseous micro-TPC matrix, filled with CF4 and CHF3. The first results on low energy nuclear recoils (H, F) obtained with a low mono-energetic neutron field are presented. The discovery potential of this search strategy is discussed and illustrated by a realistic case accessible to MIMAC.Comment: 6 pages, Proc. of the fifth international symposium on large TPCs for low energy rare event detection, Paris, France, Dec. 2010. To appear in Journal of Physic

    Sub-Telomeric core X and Y' Elements in S.cerevisiae Suppress Extreme Variations in Gene Silencing

    Get PDF
    Telomere Position Effect (TPE) is governed by strong repression signals emitted by telomeres via the Sir2/3/4 Histone Deacetylase complex. These signals are then relayed by weak proto-silencers residing in the subtelomeric core X and Y' elements. Subtelomeres also contain Sub-Telomeric Anti-silencing Regions (STARs). In this study we have prepared telomeres built of different combinations of core X, Y' and STARs and have analyzed them in strains lacking Histone-Acetyltransferase genes as well as in cdc6-1 and Δrif1 strains. We show that core X and Y' dramatically reduce both positive and negative variations in TPE, that are caused by these mutations. We also show that the deletion of Histone-Acetyltransferase genes reduce the silencing activity of an ACS proto-silencer, but also reduce the anti-silencing activity of a STAR. We postulate that core X and Y' act as epigenetic “cushioning” cis-elements

    Micromegas detector developments for MIMAC

    Full text link
    The aim of the MIMAC project is to detect non-baryonic Dark Matter with a directional TPC. The recent Micromegas efforts towards building a large size detector will be described, in particular the characterization measurements of a prototype detector of 10 ×\times 10 cm2^2 with a 2 dimensional readout plane. Track reconstruction with alpha particles will be shown.Comment: 8 pages, 7 figures Proceedings of the 3rd International conference on Directional Detection of Dark Matter (CYGNUS 2011), Aussois, France, 8-10 June 2011; corrections on author affiliation

    Crustal structure of active deformation zones in Africa: Implications for global crustal processes

    Get PDF
    The Cenozoic East African rift (EAR), Cameroon Volcanic Line (CVL), and Atlas Mountains formed on the slow-moving African continent, which last experienced orogeny during the Pan-African. We synthesize primarily geophysical data to evaluate the role of magmatism in shaping Africa's crust. In young magmatic rift zones, melt and volatiles migrate from the asthenosphere to gas-rich magma reservoirs at the Moho, altering crustal composition and reducing strength. Within the southernmost Eastern rift, the crust comprises ~20% new magmatic material ponded in the lower crust sills, and intruded as sills and dikes at shallower depths. In the Main Ethiopian rift, intrusions comprise 30% of the crust below axial zones of dike-dominated extension. In the incipient rupture zones of the Afar rift, magma intrusions fed from crustal magma chambers beneath segment centers create new columns of mafic crust, as along slow-spreading ridges. Our comparisons suggest that transitional crust, including seaward-dipping sequences, is created as progressively smaller screens of continental crust are heated and weakened by magma intrusion into 15-20 km-thick crust. In the 30Ma-Recent CVL, which lacks a hotspot age-progression, extensional forces are small, inhibiting the creation and rise of magma into the crust. In the Atlas orogen, localized magmatism follows the strike of the Atlas Mountains from the Canary Islands hotspot towards the Alboran Sea. CVL and Atlas magmatism has had minimal impact on crustal structure. Our syntheses show that magma and volatiles are migrating from the asthenosphere through the plates, modifying rheology and contributing significantly to global carbon and water fluxes

    CTCFBSDB: a CTCF-binding site database for characterization of vertebrate genomic insulators

    Get PDF
    Recent studies on transcriptional control of gene expression have pinpointed the importance of long-range interactions and three-dimensional organization of chromatins within the nucleus. Distal regulatory elements such as enhancers may activate transcription over long distances; hence, their action must be restricted within appropriate boundaries to prevent illegitimate activation of non-target genes. Insulators are DNA elements with enhancer-blocking and/or chromatin-bordering functions. In vertebrates, the versatile transcription regulator CCCTC-binding factor (CTCF) is the only identified trans-acting factor that confers enhancer-blocking insulator activity. CTCF-binding sites were found to be commonly distributed along the vertebrate genomes. We have constructed a CTCF-binding site database (CTCFBSDB) to characterize experimentally identified and computationally predicted CTCF-binding sties. Biological knowledge and data from multiple resources have been integrated into the database, including sequence data, genetic polymorphisms, function annotations, histone methylation profiles, gene expression profiles and comparative genomic information. A web-based user interface was implemented for data retrieval, analysis and visualization. In silico prediction of CTCF-binding motifs is provided to facilitate the identification of candidate insulators in the query sequences submitted by users. The database can be accessed at http://insulatordb.utmem.edu
    • 

    corecore