23 research outputs found

    A Pre-Landing Assessment of Regolith Properties at the InSight Landing Site

    Get PDF
    This article discusses relevant physical properties of the regolith at the Mars InSight landing site as understood prior to landing of the spacecraft. InSight will land in the northern lowland plains of Mars, close to the equator, where the regolith is estimated to be ≥3--5 m thick. These investigations of physical properties have relied on data collected from Mars orbital measurements, previously collected lander and rover data, results of studies of data and samples from Apollo lunar missions, laboratory measurements on regolith simulants, and theoretical studies. The investigations include changes in properties with depth and temperature. Mechanical properties investigated include density, grain-size distribution, cohesion, and angle of internal friction. Thermophysical properties include thermal inertia, surface emissivity and albedo, thermal conductivity and diffusivity, and specific heat. Regolith elastic properties not only include parameters that control seismic wave velocities in the immediate vicinity of the Insight lander but also coupling of the lander and other potential noise sources to the InSight broadband seismometer. The related properties include Poisson’s ratio, P- and S-wave velocities, Young’s modulus, and seismic attenuation. Finally, mass diffusivity was investigated to estimate gas movements in the regolith driven by atmospheric pressure changes. Physical properties presented here are all to some degree speculative. However, they form a basis for interpretation of the early data to be returned from the InSight mission.Additional co-authors: Nick Teanby and Sharon Keda

    From opera buffa to opera seria: anniversaries of Royal College of Surgeons of England research initiatives

    Get PDF

    Imprinting: the Achilles heel of trio-based exome sequencing

    No full text
    Genetics of disease, diagnosis and treatmen

    Global change tipping points: above- and below-ground biotic interactions in a low diversity ecosystem

    No full text
    Low diversity ecosystems are expected to be more vulnerable to global changes although they have received less attention than high diversity ecosystems. Addressing the present state of the Antarctic Dry Valley region by focusing on the potential global changes that may alter the coupling of above- and below-ground species and ecosystem processes is a realistic and critical need that has value beyond the Antarctic community. Presented here are suggested implications of global change on the Dry Valley terrestrial systems and how these effects might be manifested in the future
    corecore