161 research outputs found

    Baseline Demographics, Comorbidities, Treatment Patterns and Burden of Atopic Dermatitis in Adults and Adolescents from the GLOBOSTAD Long-Term Observational Study

    Get PDF
    Introduction: Insights into real-world treatment of atopic dermatitis (AD) are relevant to clinical decision making. The aim of this analysis was to characterize patients who receive dupilumab for AD in a real-world setting. Methods: The GLOBOSTAD registry is an ongoing, longitudinal, prospective, observational study of patients with AD who receive dupilumab according to country-specific prescribing information. We report baseline characteristics, comorbidities and treatment patterns for patients enrolled from July 11, 2019 to March 31, 2022. Analyses are descriptive; no formal statistical comparisons were performed. Results: Nine hundred fifty-two adults and adolescents were enrolled in GLOBOSTAD. Patients had a high disease burden before starting dupilumab: (mean [standard deviation]) percent body surface area affected (44.8 [24.42]), Eczema Area and Severity Index total score (24.8 [12.95]), SCORing Atopic Dermatitis total score (60.5 [16.34]), Patient-Oriented Eczema Measure total score (19.7 [6.37]) and Dermatology Life Quality Index total score (13.7 [7.02]). Overall, 741 (77.8%) patients reported ≥ 1 type 2 inflammatory comorbidities, most frequently allergic rhinitis (492 [51.7%]), asthma (323 [33.9%]), food allergy (294 [30.9%]) or another allergy (274 [28.8%]). In the previous 12 months, 310 (32.6%) patients had received systemic non-steroidal immunosuppressants and 169 (17.8%) systemic corticosteroids; 449 (47.2%) had received topical corticosteroids, most commonly potent topical corticosteroids; 141 (14.8%) had received topical calcineurin inhibitors and 32 (3.4%) ultraviolet therapy. Most (713 [74.9%]) patients started dupilumab because of prior treatment failure. Conclusion: Patients enrolled in GLOBOSTAD demonstrated considerable multidimensional burden of disease across AD signs, symptoms and quality of life despite previous use of systemic and non-systemic AD treatments

    Developing cardiac and skeletal muscle share fast-skeletal myosin heavy chain and cardiac troponin-I expression

    Get PDF
    Skeletal muscle derived stem cells (MDSCs) transplanted into injured myocardium can differentiate into fast skeletal muscle specific myosin heavy chain (sk-fMHC) and cardiac specific troponin-I (cTn-I) positive cells sustaining recipient myocardial function. We have recently found that MDSCs differentiate into a cardiomyocyte phenotype within a three-dimensional gel bioreactor. It is generally accepted that terminally differentiated myocardium or skeletal muscle only express cTn-I or sk-fMHC, respectively. Studies have shown the presence of non-cardiac muscle proteins in the developing myocardium or cardiac proteins in pathological skeletal muscle. In the current study, we tested the hypothesis that normal developing myocardium and skeletal muscle transiently share both sk-fMHC and cTn-I proteins. Immunohistochemistry, western blot, and RT-PCR analyses were carried out in embryonic day 13 (ED13) and 20 (ED20), neonatal day 0 (ND0) and 4 (ND4), postnatal day 10 (PND10), and 8 week-old adult female Lewis rat ventricular myocardium and gastrocnemius muscle. Confocal laser microscopy revealed that sk-fMHC was expressed as a typical striated muscle pattern within ED13 ventricular myocardium, and the striated sk-fMHC expression was lost by ND4 and became negative in adult myocardium. cTn-I was not expressed as a typical striated muscle pattern throughout the myocardium until PND10. Western blot and RT-PCR analyses revealed that gene and protein expression patterns of cardiac and skeletal muscle transcription factors and sk-fMHC within ventricular myocardium and skeletal muscle were similar at ED20, and the expression patterns became cardiac or skeletal muscle specific during postnatal development. These findings provide new insight into cardiac muscle development and highlight previously unknown common developmental features of cardiac and skeletal muscle. © 2012 Clause et al

    Baseline Demographics, Comorbidities, Treatment Patterns and Burden of Atopic Dermatitis in Adults and Adolescents from the GLOBOSTAD Long-Term Observational Study

    Get PDF
    Introduction - Insights into real-world treatment of atopic dermatitis (AD) are relevant to clinical decision making. The aim of this analysis was to characterize patients who receive dupilumab for AD in a real-world setting. Methods - The GLOBOSTAD registry is an ongoing, longitudinal, prospective, observational study of patients with AD who receive dupilumab according to country-specific prescribing information. We report baseline characteristics, comorbidities and treatment patterns for patients enrolled from July 11, 2019 to March 31, 2022. Analyses are descriptive; no formal statistical comparisons were performed. Results - Nine hundred fifty-two adults and adolescents were enrolled in GLOBOSTAD. Patients had a high disease burden before starting dupilumab: (mean [standard deviation]) percent body surface area affected (44.8 [24.42]), Eczema Area and Severity Index total score (24.8 [12.95]), SCORing Atopic Dermatitis total score (60.5 [16.34]), Patient-Oriented Eczema Measure total score (19.7 [6.37]) and Dermatology Life Quality Index total score (13.7 [7.02]). Overall, 741 (77.8%) patients reported ≥ 1 type 2 inflammatory comorbidities, most frequently allergic rhinitis (492 [51.7%]), asthma (323 [33.9%]), food allergy (294 [30.9%]) or another allergy (274 [28.8%]). In the previous 12 months, 310 (32.6%) patients had received systemic non-steroidal immunosuppressants and 169 (17.8%) systemic corticosteroids; 449 (47.2%) had received topical corticosteroids, most commonly potent topical corticosteroids; 141 (14.8%) had received topical calcineurin inhibitors and 32 (3.4%) ultraviolet therapy. Most (713 [74.9%]) patients started dupilumab because of prior treatment failure. Conclusion - Patients enrolled in GLOBOSTAD demonstrated considerable multidimensional burden of disease across AD signs, symptoms and quality of life despite previous use of systemic and non-systemic AD treatments

    Comparison between human fetal and adult skin

    Get PDF
    Healing of early-gestation fetal wounds results in scarless healing. Since the capacity for regeneration is probably inherent to the fetal skin itself, knowledge of the fetal skin composition may contribute to the understanding of fetal wound healing. The aim of this study was to analyze the expression profiles of different epidermal and dermal components in the human fetal and adult skin. In the human fetal skin (ranging from 13 to 22 weeks’ gestation) and adult skin biopsies, the expression patterns of several epidermal proteins (K10, K14, K16, K17, SKALP, involucrin), basement membrane proteins, Ki-67, blood vessels and extracellular matrix proteins (fibronectin, chondroitin sulfate, elastin) were determined using immunohistochemistry. The expression profiles of K17, involucrin, dermal Ki-67, fibronectin and chondroitin sulfate were higher in the fetal skin than in adult skin. In the fetal skin, elastin was not present in the dermis, but it was found in the adult skin. The expression patterns of basement membrane proteins, blood vessels, K10, K14, K16 and epidermal Ki-67 were similar in human fetal skin and adult skin. In this systematic overview, most of the differences between fetal and adult skin were found at the level of dermal extracellular matrix molecules expression. This study suggests that, especially, dermal components are important in fetal scarless healing

    Gene expression profiling of alveolar soft-part sarcoma (ASPS)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Alveolar soft-part sarcoma (ASPS) is an extremely rare, highly vascular soft tissue sarcoma affecting predominantly adolescents and young adults. In an attempt to gain insight into the pathobiology of this enigmatic tumor, we performed the first genome-wide gene expression profiling study.</p> <p>Methods</p> <p>For seven patients with confirmed primary or metastatic ASPS, RNA samples were isolated immediately following surgery, reverse transcribed to cDNA and each sample hybridized to duplicate high-density human U133 plus 2.0 microarrays. Array data was then analyzed relative to arrays hybridized to universal RNA to generate an unbiased transcriptome. Subsequent gene ontology analysis was used to identify transcripts with therapeutic or diagnostic potential. A subset of the most interesting genes was then validated using quantitative RT-PCR and immunohistochemistry.</p> <p>Results</p> <p>Analysis of patient array data versus universal RNA identified elevated expression of transcripts related to angiogenesis (ANGPTL2, HIF-1 alpha, MDK, c-MET, VEGF, TIMP-2), cell proliferation (PRL, IGFBP1, NTSR2, PCSK1), metastasis (ADAM9, ECM1, POSTN) and steroid biosynthesis (CYP17A1 and STS). A number of muscle-restricted transcripts (ITGB1BP3/MIBP, MYF5, MYF6 and TRIM63) were also identified, strengthening the case for a muscle cell progenitor as the origin of disease. Transcript differentials were validated using real-time PCR and subsequent immunohistochemical analysis confirmed protein expression for several of the most interesting changes (MDK, c-MET, VEGF, POSTN, CYP17A1, ITGB1BP3/MIBP and TRIM63).</p> <p>Conclusion</p> <p>Results from this first comprehensive study of ASPS gene expression identifies several targets involved in angiogenesis, metastasis and myogenic differentiation. These efforts represent the first step towards defining the cellular origin, pathogenesis and effective treatment strategies for this atypical malignancy.</p

    Long-term microdystrophin gene therapy is effective in a canine model of Duchenne muscular dystrophy

    Get PDF
    Duchenne muscular dystrophy (DMD) is an incurable X-linked muscle-wasting disease caused by mutations in the dystrophin gene. Gene therapy using highly functional microdystrophin genes and recombinant adeno-associated virus (rAAV) vectors is an attractive strategy to treat DMD. Here we show that locoregional and systemic delivery of a rAAV2/8 vector expressing a canine microdystrophin (cMD1) is effective in restoring dystrophin expression and stabilizing clinical symptoms in studies performed on a total of 12 treated golden retriever muscular dystrophy (GRMD) dogs. Locoregional delivery induces high levels of microdystrophin expression in limb musculature and significant amelioration of histological and functional parameters. Systemic intravenous administration without immunosuppression results in significant and sustained levels of microdystrophin in skeletal muscles and reduces dystrophic symptoms for over 2 years. No toxicity or adverse immune consequences of vector administration are observed. These studies indicate safety and efficacy of systemic rAAV-cMD1 delivery in a large animal model of DMD, and pave the way towards clinical trials of rAAV-microdystrophin gene therapy in DMD patients

    PAX4 Enhances Beta-Cell Differentiation of Human Embryonic Stem Cells

    Get PDF
    Background Human embryonic stem cells (HESC) readily differentiate into an apparently haphazard array of cell types, corresponding to all three germ layers, when their culture conditions are altered, for example by growth in suspension as aggregates known as embryoid bodies (EBs). However, this diversity of differentiation means that the efficiency of producing any one particular cell type is inevitably low. Although pancreatic differentiation has been reported from HESC, practicable applications for the use of β-cells derived from HESC to treat diabetes will only be possible once techniques are developed to promote efficient differentiation along the pancreatic lineages. Methods and Findings Here, we have tested whether the transcription factor, Pax4 can be used to drive the differentiation of HESC to a β-cell fate in vitro. We constitutively over-expressed Pax4 in HESCs by stable transfection, and used Q-PCR analysis, immunocytochemistry, ELISA, Ca2+ microfluorimetry and cell imaging to assess the role of Pax4 in the differentiation and intracellular Ca2+ homeostasis of β-cells developing in embryoid bodies produced from such HESC. Cells expressing key β-cell markers were isolated by fluorescence-activated cell sorting after staining for high zinc content using the vital dye, Newport Green. Conclusion Constitutive expression of Pax4 in HESC substantially enhances their propensity to form putative β-cells. Our findings provide a novel foundation to study the mechanism of pancreatic β-cells differentiation during early human development and to help evaluate strategies for the generation of purified β-cells for future clinical applications

    Targeting poly(ADP-ribose) polymerase activity for cancer therapy

    Get PDF
    Poly(ADP-ribosyl)ation is a ubiquitous protein modification found in mammalian cells that modulates many cellular responses, including DNA repair. The poly(ADP-ribose) polymerase (PARP) family catalyze the formation and addition onto proteins of negatively charged ADP-ribose polymers synthesized from NAD+. The absence of PARP-1 and PARP-2, both of which are activated by DNA damage, results in hypersensitivity to ionizing radiation and alkylating agents. PARP inhibitors that compete with NAD+ at the enzyme’s activity site are effective chemo- and radiopotentiation agents and, in BRCA-deficient tumors, can be used as single-agent therapies acting through the principle of synthetic lethality. Through extensive drug-development programs, third-generation inhibitors have now entered clinical trials and are showing great promise. However, both PARP-1 and PARP-2 are not only involved in DNA repair but also in transcription regulation, chromatin modification, and cellular homeostasis. The impact on these processes of PARP inhibition on long-term therapeutic responses needs to be investigated

    The genomics of heart failure: design and rationale of the HERMES consortium

    Get PDF
    AIMS: The HERMES (HEart failure Molecular Epidemiology for Therapeutic targetS) consortium aims to identify the genomic and molecular basis of heart failure. METHODS AND RESULTS: The consortium currently includes 51 studies from 11 countries, including 68 157 heart failure cases and 949 888 controls, with data on heart failure events and prognosis. All studies collected biological samples and performed genome-wide genotyping of common genetic variants. The enrolment of subjects into participating studies ranged from 1948 to the present day, and the median follow-up following heart failure diagnosis ranged from 2 to 116 months. Forty-nine of 51 individual studies enrolled participants of both sexes; in these studies, participants with heart failure were predominantly male (34–90%). The mean age at diagnosis or ascertainment across all studies ranged from 54 to 84 years. Based on the aggregate sample, we estimated 80% power to genetic variant associations with risk of heart failure with an odds ratio of ≥1.10 for common variants (allele frequency ≥ 0.05) and ≥1.20 for low-frequency variants (allele frequency 0.01–0.05) at P < 5 × 10^{-8} under an additive genetic model. CONCLUSIONS: HERMES is a global collaboration aiming to (i) identify the genetic determinants of heart failure; (ii) generate insights into the causal pathways leading to heart failure and enable genetic approaches to target prioritization; and (iii) develop genomic tools for disease stratification and risk prediction
    corecore