637 research outputs found
Influence of the microstructure on the magnetism of Co-doped ZnO thin films
The prediction of ferromagnetism at room temperature in Co-ZnO thin films has
generated a large interest in the community due to the possible applications.
However, the results are controversial, going from ferromagnetism to
non-ferromagnetism, leading to a large debate about its origin (secondary
phase, Co clusters or not). By carefully studying the micro-structure of
various Co-ZnO films, we show that the Co2+ partly substitutes the ZnO wurtzite
matrix without forming Co clusters. Surprisingly, the ferromagnetism nature of
the films disappears as the Co content increases. In addition, our results
suggest that the observed ferromagnetism is likely associated to a large amount
of defects- close to the interface and strongly depending on the growth
temperature- which may explained the spreading of the results.Comment: 4 pages, 4 figures, to be published in Journal of Applied Physics
(2006
Investigation of laser ablated ZnO thin films grown with Zn metal target: a structural study
High quality ZnO thin films were gown using the pulsed laser deposition
technique on (0001) AlO substrates in an oxidizing atmosphere, using a
Zn metallic target. We varied the growth conditions such as the deposition
temperature and the oxygen pressure. First, using a battery of techniques such
as x-rays diffraction, Rutherford Backscattering spectroscopy and atomic force
microscopy, we evaluated the structural quality, the stress and the degree of
epitaxy of the films. Second, the relations between the deposition conditions
and the structural properties, that are directly related to the nature of the
thin films, are discussed qualitatively. Finally, a number of issues on how to
get good-quality ZnO films are addressed.Comment: To be published in Jour. Appl. Phys. (15 August 2004
Structural and magnetic properties of a series of low doped ZnCoO thin films deposited from Zn and Co metal targets on (0001) AlO substrates
We report on the synthesis of low doping ZnCoO () thin
films on (0001)-AlO substrates. The films were prepared in an oxidizing
atmosphere, using the pulsed laser deposition technique starting from Zn and Co
metallic targets. We first studied the influence of the strains of ZnO and
their stuctural properties. Second, we have investigated the structural and the
magnetic properties of the ZnCoO films. We show that at low doping,
the lattice parameters and the magnetization of the ZnCoO films
depend strongly on the Co concentration.Comment: to be published in Journal Applied Physics (June 2004) as a
proceeding of the MMM/Intermag Conferenc
Gap Formation in the Dust Layer of 3D Protoplanetary Disks
We numerically model the evolution of dust in a protoplanetary disk using a
two-phase (gas+dust) Smoothed Particle Hydrodynamics (SPH) code, which is
non-self-gravitating and locally isothermal. The code follows the three
dimensional distribution of dust in a protoplanetary disk as it interacts with
the gas via aerodynamic drag. In this work, we present the evolution of a disk
comprising 1% dust by mass in the presence of an embedded planet for two
different disk configurations: a small, minimum mass solar nebular (MMSN) disk
and a larger, more massive Classical T Tauri star (CTTS) disk. We then vary the
grain size and planetary mass to see how they effect the resulting disk
structure. We find that gap formation is much more rapid and striking in the
dust layer than in the gaseous disk and that a system with a given stellar,
disk and planetary mass will have a different appearance depending on the grain
size and that such differences will be detectable in the millimetre domain with
ALMA. For low mass planets in our MMSN models, a gap can open in the dust disk
while not in the gas disk. We also note that dust accumulates at the external
edge of the planetary gap and speculate that the presence of a planet in the
disk may facilitate the growth of planetesimals in this high density region.Comment: 5 page, 4 figures. Accepted for publication in Astrophysics & Space
Scienc
The CH abundance in Jupiter's upper atmosphere
Hydrocarbon species, and in particular CH, play a key role in the
stratosphere--thermosphere boundary of Jupiter, which occurs around the
-bar pressure level. Previous analyses of solar occultation, He and
Ly- airglow, and ISO/SWS measurements of the radiance around 3.3 m
have inferred significantly different methane concentrations. Here we aim to
accurately model the CH radiance at 3.3 m measured by ISO/SWS by using
a comprehensive non-local thermodynamic equilibrium model and the most recent
collisional rates measured in the laboratory for CH to shed new light onto
the methane concentration in the upper atmosphere of Jupiter. These emission
bands have been shown to present a peak contribution precisely at the -bar
level, hence directly probing the region of interest. We find that a high
CH concentration is necessary to explain the data, in contrast with the
most recent analyses, and that the observations favour the lower limit of the
latest laboratory measurements of the CH collisional relaxation rates. Our
results provide precise constraints on the composition and dynamics of the
lower atmosphere of Jupiter.Comment: 15 pages; accepted for publication in A&
Detection of CO and HCN in Pluto's atmosphere with ALMA
Observations of the Pluto-Charon system, acquired with the ALMA
interferometer on June 12-13, 2015, have yielded a detection of the CO(3-2) and
HCN(4-3) rotational transitions from Pluto, providing a strong confirmation of
the presence of CO, and the first observation of HCN, in Pluto's atmosphere.
The CO and HCN lines probe Pluto's atmosphere up to ~450 km and ~900 km
altitude, respectively. The CO detection yields (i) a much improved
determination of the CO mole fraction, as 515+/-40 ppm for a 12 ubar surface
pressure (ii) clear evidence for a well-marked temperature decrease (i.e.,
mesosphere) above the 30-50 km stratopause and a best-determined temperature of
70+/-2 K at 300 km, in agreement with recent inferences from New Horizons /
Alice solar occultation data. The HCN line shape implies a high abundance of
this species in the upper atmosphere, with a mole fraction >1.5x10-5 above 450
km and a value of 4x10-5 near 800 km. The large HCN abundance and the cold
upper atmosphere imply supersaturation of HCN to a degree (7-8 orders of
magnitude) hitherto unseen in planetary atmospheres, probably due to the slow
kinetics of condensation at the low pressure and temperature conditions of
Pluto's upper atmosphere. HCN is also present in the bottom ~100 km of the
atmosphere, with a 10-8 - 10-7 mole fraction; this implies either HCN
saturation or undersaturation there, depending on the precise stratopause
temperature. The HCN column is (1.6+/-0.4)x10^14 cm-2, suggesting a
surface-referred net production rate of ~2x10^7 cm-2s-1. Although HCN
rotational line cooling affects Pluto's atmosphere heat budget, the amounts
determined in this study are insufficient to explain the well-marked mesosphere
and upper atmosphere's ~70 K temperature. We finally report an upper limit on
the HC3N column density (< 2x10^13 cm-2) and on the HC15N / HC14N ratio (<
1/125).Comment: Revised version. Icarus, in press, Oct. 11, 2016. 57 pages, including
13 figures and 4 table
Non-epileptic seizures: delayed diagnosis in patients presenting with electroencephalographic (EEG) or clinical signs of epileptic seizures
AbstractThe clinical differentiation between epileptic seizures (ES) and non-epileptic seizures (NES) is often difficult and mostly based on the presence or absence of widely recognized features of ES such as tongue biting, falling, incontinence or concomitant epileptic abnormalities in the electroencephalogram (EEG). We retrospectively analysed the records of all patients referred to our Epilepsy Centre for refractory epilepsy and finally diagnosed with NES between 1980 and 1999 ( n= 103), half of them also exhibiting ES. The mean time-lapse between first attack and NES diagnosis was 8.7 ± 1.3 years and 16.5 ± 1.4 years for the NES and NES + ES groups respectively. At least one of the usual signs associated with generalized tonic–clonic seizures (tongue biting, falling or incontinence) was reported by 66% and 60% of patients with NES or NES + ES respectively. Interictal EEG abnormalities were recorded in 16% of NES patients vs. 80% of NES + ES patients. In the NES group, delay before establishing the correct diagnosis was significantly longer when the patients exhibited ≥1 symptom(s) of generalized seizures, or when patients exhibited interictal EEG abnormalities. Upon admission, 72% of NES patients and all NES + ES patients were being treated with antiepileptic drugs (AEDs).We conclude that EEG or clinical abnormalities suggestive of epileptic seizures are common in undiagnosed NES patients. Such diagnostic pitfalls, besides considerably delaying NES diagnosis, also considerably delay appropriate treatment implementation
Hubbard band or oxygen vacancy states in the correlated electron metal SrVO?
We study the effect of oxygen vacancies on the electronic structure of the
model strongly correlated metal SrVO. By means of angle-resolved
photoemission (ARPES) synchrotron experiments, we investigate the systematic
effect of the UV dose on the measured spectra. We observe the onset of a
spurious dose-dependent prominent peak at an energy range were the lower
Hubbard band has been previously reported in this compound, raising questions
on its previous interpretation. By a careful analysis of the dose dependent
effects we succeed in disentangling the contributions coming from the oxygen
vacancy states and from the lower Hubbard band. We obtain the intrinsic ARPES
spectrum for the zero-vacancy limit, where a clear signal of a lower Hubbard
band remains. We support our study by means of state-of-the-art ab initio
calculations that include correlation effects and the presence of oxygen
vacancies. Our results underscore the relevance of potential spurious states
affecting ARPES experiments in correlated metals, which are associated to the
ubiquitous oxygen vacancies as extensively reported in the context of a
two-dimensional electron gas (2DEG) at the surface of insulating
transition metal oxides.Comment: Manuscript + Supplemental Material, 12 pages, 9 figure
The Exomars Climate Sounder (EMCS) Investigation
The ExoMars Climate Sounder (EMCS) investigation is developed at the Jet Propulsion Laboratory (Principal Investigator J. T. Schofield) in collaboration with an international scientific team from France, the United Kingdom and the USA.
EMCS plans to map daily, global, pole-to-pole profiles of temperature, dust, water and CO2 ices, and water vapor from the proposed 2016 ExoMars Trace Gas Orbiter (EMTGO). These profiles are to be assimilated into Mars General Circulation Models (MGCMs) to generate global, interpolated fields of measured and derived parameters such as wind
- …