253 research outputs found

    Dynamique des tubes parcourus à grandes vitesses et prévision de leur fiabilité

    Get PDF
    Dans un tube d'arme, un projectile génère des sollicitations dynamiques influençant la "durée de vie" du système, laquelle est définie à partir de critères d'endommagement. La présentation concerne l'identification des contraintes les plus significatives (accompagnant le projectile en mouvement) grâce à un modèle tridimensionnel validé (tube et projectile) élaboré pour l'étude. Le calcul d'endommagement, réalisé grâce à un code existant, décrit l'effet cumulatif des sollicitations dynamiques

    Odour reduction strategies for biosolids produced from a Western Australian wastewater treatment plant: Results from Phase I laboratory trials

    Get PDF
    This study investigated sources of odours from biosolids produced from a Western Australian wastewater treatment plant and examined possible strategies for odour reduction, specifically chemical additions and reduction of centrifuge speed on a laboratory scale. To identify the odorous compounds and assess the effectiveness of the odour reduction measures trialled in this study, headspace solid-phase microextraction gas chromatography-mass spectrometry (HS SPME-GC-MS) methods were developed. The target odour compounds included volatile sulphur compounds (e.g. dimethyl sulphide, dimethyl disulphide and dimethyl trisulphide) and other volatile organic compounds (e.g. toluene, ethylbenzene, styrene, p-cresol, indole and skatole). In our laboratory trials, aluminium sulphate added to anaerobically digested sludge prior to dewatering offered the best odour reduction strategy amongst the options that were investigated, resulting in approximately 40% reduction in the maximum concentration of the total volatile organic sulphur compounds, relative to control

    Laboratory Scale Investigations of Potential Odour Reduction Strategies in Biosolids

    Get PDF
    This study investigated sources of odours from biosolids produced from a Western Australian wastewater treatment plant and examined potential odour reduction strategies on a laboratory scale. Odour reduction methods that were trialled included chemical additions and reduction of centrifuge speed. Chemical addition trials were conducted by adding alum, polyaluminium chloride or ferric chloride to digested sludge that had been sampled prior to the dewatering stage. Trials of chemical addition (alum) to plant dewatered cake were also undertaken. The impact of reducing centrifuge speed on biosolids odour was also investigated using a laboratory scale centrifuge calibrated to operate such that the shear forces on the sample would, as closely as possible, represent those on the plant. To identify the odorous compounds present in biosolids and to assess the effectiveness of the odour reduction measures, headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry (HS SPME-GC-MS) methods were developed. Target odour compounds included volatile sulphur compounds (e.g. DMS, DMDS, DMTS) and other volatile organic compounds (toluene, thylbenzene, styrene, p-cresol, indole, skatole and geosmin). In our laboratory trials, aluminium sulphate added to digested sludge prior to dewatering offered the best odour reduction strategy among the options that were investigated, resulting in approximately 40% reduction in peak concentration of the total volatile organic sulphur compounds (TVOSC), relative to a control sample

    The physiological consequences of crib-biting in horses in response to an ACTH challenge test

    Get PDF
    Stereotypies are repetitive and relatively invariant patterns of behavior, which are observed in a wide range of species in captivity. Stereotypic behavior occurs when environmental demands produce a physiological response that, if sustained for an extended period, exceeds the natural physiological regulatory capacity of the organism, particularly in situations that include unpredictability and uncontrollability. One hypothesis is that stereotypic behavior functions to cope with stressful environments, but the existing evidence is contradictory. To address the coping hypothesis of stereotypies, we triggered physiological reactions in 22 horses affected by stereotypic behavior (crib-biters) and 21 non-crib-biters (controls), using an ACTH challenge test. Following administration of an ACTH injection, we measured saliva cortisol every 30 min and heart rate (HR) continuously for a period of 3 h. We did not find any differences in HR or HR variability between the two groups, but crib-biters had significantly higher cortisol responses than controls (mean ± SD: CB, 5.84 ± 2.62 ng/ml, C, 4.76 ± 3.04 ng/ml). Moreover, crib-biters that did not perform the stereotypic behavior during the 3- h test period (Group B) had significantly higher cortisol levels than controls, which was not the case of crib-biters showing stereotypic behavior (Group A) (A, 5.58 ± 2.69 ng/ml; B, 6.44 ± 2.38 ng/ml). Our results suggest that crib-biting is a coping strategy that helps stereotypic individuals to reduce cortisol levels caused by stressful situations. We conclude that preventing stereotypic horses from crib-biting could be an inappropriate strategy to control this abnormal behavior, as it prevents individuals from coping with situations that they perceive as stressful.PostprintPeer reviewe

    Neuroimaging young children and associations with neurocognitive development in a South African birth cohort study.

    Get PDF
    Magnetic resonance imaging (MRI) is an indispensable tool for investigating brain development in young children and the neurobiological mechanisms underlying developmental risk and resilience. Sub-Saharan Africa has the highest proportion of children at risk of developmental delay worldwide, yet in this region there is very limited neuroimaging research focusing on the neurobiology of such impairment. Furthermore, paediatric MRI imaging is challenging in any setting due to motion sensitivity. Although sedation and anesthesia are routinely used in clinical practice to minimise movement in young children, this may not be ethical in the context of research. Our study aimed to investigate the feasibility of paediatric multimodal MRI at age 2-3 years without sedation, and to explore the relationship between cortical structure and neurocognitive development at this understudied age in a sub-Saharan African setting. A total of 239 children from the Drakenstein Child Health Study, a large observational South African birth cohort, were recruited for neuroimaging at 2-3 years of age. Scans were conducted during natural sleep utilising locally developed techniques. T1-MEMPRAGE and T2-weighted structural imaging, resting state functional MRI, diffusion tensor imaging and magnetic resonance spectroscopy sequences were included. Child neurodevelopment was assessed using the Bayley-III Scales of Infant and Toddler Development. Following 23 pilot scans, 216 children underwent scanning and T1-weighted images were obtained from 167/216 (77%) of children (median age 34.8 months). Furthermore, we found cortical surface area and thickness within frontal regions were associated with cognitive development, and in temporal and frontal regions with language development (beta coefficient ?0.20). Overall, we demonstrate the feasibility of carrying out a neuroimaging study of young children during natural sleep in sub-Saharan Africa. Our findings indicate that dynamic morphological changes in heteromodal association regions are associated with cognitive and language development at this young age. These proof-of-concept analyses suggest similar links between the brain and cognition as prior literature from high income countries, enhancing understanding of the interplay between cortical structure and function during brain maturation

    Telomeric protein TRF2 protects Holliday junctions with telomeric arms from displacement by the Werner syndrome helicase

    Get PDF
    WRN protein loss causes Werner syndrome (WS), which is characterized by premature aging as well as genomic and telomeric instability. WRN prevents telomere loss, but the telomeric protein complex must regulate WRN activities to prevent aberrant telomere processing. Telomere-binding TRF2 protein inhibits telomere t-loop deletion by blocking Holliday junction (HJ) resolvase cleavage activity, but whether TRF2 also modulates HJ displacement at t-loops is unknown. In this study, we used multiplex fluorophore imaging to track the fate of individual strands of HJ substrates. We report the novel finding that TRF2 inhibits WRN helicase strand displacement of HJs with telomeric repeats in duplex arms, but unwinding of HJs with a telomeric center or lacking telomeric sequence is unaffected. These data, together with results using TRF2 fragments and TRF2 HJ binding assays, indicate that both the TRF2 B- and Myb domains are required to inhibit WRN HJ activity. We propose a novel model whereby simultaneous binding of the TRF2 B-domain to the HJ core and the Myb domain to telomeric arms promote and stabilize HJs in a stacked arm conformation that is unfavorable for unwinding. Our biochemical study provides a mechanistic basis for the cellular findings that TRF2 regulates WRN activity at telomeres
    corecore