Laboratory Scale Investigations of Potential Odour Reduction Strategies in Biosolids

Abstract

This study investigated sources of odours from biosolids produced from a Western Australian wastewater treatment plant and examined potential odour reduction strategies on a laboratory scale. Odour reduction methods that were trialled included chemical additions and reduction of centrifuge speed. Chemical addition trials were conducted by adding alum, polyaluminium chloride or ferric chloride to digested sludge that had been sampled prior to the dewatering stage. Trials of chemical addition (alum) to plant dewatered cake were also undertaken. The impact of reducing centrifuge speed on biosolids odour was also investigated using a laboratory scale centrifuge calibrated to operate such that the shear forces on the sample would, as closely as possible, represent those on the plant. To identify the odorous compounds present in biosolids and to assess the effectiveness of the odour reduction measures, headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry (HS SPME-GC-MS) methods were developed. Target odour compounds included volatile sulphur compounds (e.g. DMS, DMDS, DMTS) and other volatile organic compounds (toluene, thylbenzene, styrene, p-cresol, indole, skatole and geosmin). In our laboratory trials, aluminium sulphate added to digested sludge prior to dewatering offered the best odour reduction strategy among the options that were investigated, resulting in approximately 40% reduction in peak concentration of the total volatile organic sulphur compounds (TVOSC), relative to a control sample

    Similar works