374 research outputs found
Carbon K-shell Photo Ionization of CO: Molecular frame angular Distributions of normal and conjugate shakeup Satellites
We have measured the molecular frame angular distributions of photoelectrons
emitted from the Carbon K shell of fixed-in-space CO molecules for the case of
simultaneous excitation of the remaining molecular ion. Normal and conjugate
shake up states are observed. Photo electrons belonging to normal \Sigma
-satellite lines show an angular distribution resembling that observed for the
main photoline at the same electron energy. Surprisingly a similar shape is
found for conjugate shake up states with \Pi -symmetry. In our data we identify
shake rather than electron scattering (PEVE) as the mechanism producing the
conjugate lines. The angular distributions clearly show the presence of a
\Sigma -shape resonance for all of the satellite lines.Comment: 8 pages, 2 figure
Concomitant sinus histiocytosis with massive lymphadenopathy (Rosai-Dorfman Disease) and diffuse large B-cell lymphoma: a case report
IntroductionSinus histiocytosis with massive lymphadenopathy, also known as Rosai-Dorfman Disease, is a rare and benign source of lymphadenopathy first described in 1969, which mimics neoplastic processes. This disease commonly presents in children and young adults with supra-diaphragmatic lymphadenopathy or extranodal lesions consisting of tissue infiltrates composed of a polyclonal population of histiocytes. Since its description greater than 400 cases have been described, sometimes in patients with a variety of treated and untreated neoplastic diseases. However, the literature contains reports of only 19 cases of Rosai-Dorfman Disease in association with lymphomas, Hodgkin's or non-Hodgkin's. The majority of these cases have the two diagnoses, malignant lymphoma and Rosai-Dorfman Disease, separated in time. Interestingly, infradiaphragmatic lymphadenopathy was a feature in the majority of previously reported cases of Rosai-Dorfman Disease and non-Hodgkin's lymphoma.Case presentationThis report provides details of a case with co-existing sinus histiocytosis with massive lymphadenopathy and diffuse large B cell non-Hodgkin's lymphoma. This case is the fifth described case of simultaneous Rosai-Dorfman Disease and concurrent non-Hodgkin's lymphoma. Unfortunately, the diagnosis of a clinically aggressive diffuse large B cell lymphoma was made at autopsy. The aggressive biological behavior of the diffuse large B cell lymphoma in this patient may have been related to the underlying immune dysregulation believed to be part of the pathophysiology of Rosai-Dorfman Disease.ConclusionTaken together this report and the preceding reports of Rosai-Dorfman Disease and non-Hodgkin's lymphoma suggests that in cases with a diagnosis of Rosai-Dorfman Disease in the setting of prominent infradiaphragmatic lymphadenopathy, clinicians should maintain a high index of suspicion for the presence of occult non-Hodgkin's lymphoma especially if the clinical course is atypical for classic Rosai-Dorfman Disease
Interatomic Coulombic Decay following Photoionization of the Helium Dimer: Observation of Vibrational Structure
Using synchrotron radiation we simultaneously ionize and excite one helium
atom of a helium dimer (He_2) in a shakeup process. The populated states of the
dimer ion (i.e. He^[*+](n = 2; 3)-He) are found to deexcite via interatomic
coulombic decay. This leads to the emission of a second electron from the
neutral site and a subsequent coulomb explosion. In this letter we present a
measurement of the momenta of fragments that are created during this reaction.
The electron energy distribution and the kinetic energy release of the two He^+
ions show pronounced oscillations which we attribute to the structure of the
vibrational wave function of the dimer ion.Comment: 8 pages, 5 figure
Single photon double ionization of the helium dimer
We show that a single photon can ionize the two helium atoms of the helium
dimer in a distance up to 10 {\deg}A. The energy sharing among the electrons,
the angular distributions of the ions and electrons as well as comparison with
electron impact data for helium atoms suggest a knock-off type double
ionization process. The Coulomb explosion imaging of He_2 provides a direct
view of the nuclear wave function of this by far most extended and most diffuse
of all naturally existing molecules.Comment: 10 pages, 5 figure
Time-Resolved Measurement of Interatomic Coulombic Decay in Ne_2
The lifetime of interatomic Coulombic decay (ICD) [L. S. Cederbaum et al.,
Phys. Rev. Lett. 79, 4778 (1997)] in Ne_2 is determined via an extreme
ultraviolet pump-probe experiment at the Free-Electron Laser in Hamburg. The
pump pulse creates a 2s inner-shell vacancy in one of the two Ne atoms,
whereupon the ionized dimer undergoes ICD resulting in a repulsive
Ne^{+}(2p^{-1}) - Ne^{+}(2p^{-1}) state, which is probed with a second pulse,
removing a further electron. The yield of coincident Ne^{+} - Ne^{2+} pairs is
recorded as a function of the pump-probe delay, allowing us to deduce the ICD
lifetime of the Ne_{2}^{+}(2s^{-1}) state to be (150 +/- 50) fs in agreement
with quantum calculations.Comment: 5 pages, 3 figures, accepted by PRL on July 11th, 201
Imaging Molecular Structure through Femtosecond Photoelectron Diffraction on Aligned and Oriented Gas-Phase Molecules
This paper gives an account of our progress towards performing femtosecond
time-resolved photoelectron diffraction on gas-phase molecules in a pump-probe
setup combining optical lasers and an X-ray Free-Electron Laser. We present
results of two experiments aimed at measuring photoelectron angular
distributions of laser-aligned 1-ethynyl-4-fluorobenzene (C8H5F) and
dissociating, laseraligned 1,4-dibromobenzene (C6H4Br2) molecules and discuss
them in the larger context of photoelectron diffraction on gas-phase molecules.
We also show how the strong nanosecond laser pulse used for adiabatically
laser-aligning the molecules influences the measured electron and ion spectra
and angular distributions, and discuss how this may affect the outcome of
future time-resolved photoelectron diffraction experiments.Comment: 24 pages, 10 figures, Faraday Discussions 17
Communication: X-ray coherent diffractive imaging by immersion in nanodroplets
Citation: Tanyag, R. M. P., Bernando, C., Jones, C. F., Bacellar, C., Ferguson, K. R., Anielski, D., . . . Vilesov, A. F. (2015). Communication: X-ray coherent diffractive imaging by immersion in nanodroplets. Structural Dynamics, 2(5), 9. doi:10.1063/1.4933297Lensless x-ray microscopy requires the recovery of the phase of the radiation scattered from a specimen. Here, we demonstrate a de novo phase retrieval technique by encapsulating an object in a superfluid helium nanodroplet, which provides both a physical support and an approximate scattering phase for the iterative image reconstruction. The technique is robust, fast-converging, and yields the complex density of the immersed object. Images of xenon clusters embedded in superfluid helium droplets reveal transient configurations of quantum vortices in this fragile system. (C) 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.Additional Authors: Neumark, D. M.;Rolles, D.;Rudek, B.;Rudenko, A.;Siefermann, K. R.;Ullrich, J.;Weise, F.;Bostedt, C.;Gessner, O.;Vilesov, A. F
Charge transfer in dissociating iodomethane and fluoromethane molecules ionized by intense femtosecond X-ray pulses
Citation: Boll, R., Erk, B., Coffee, R., Trippel, S., Kierspel, T., Bomme, C., . . . Rudenko, A. (2016). Charge transfer in dissociating iodomethane and fluoromethane molecules ionized by intense femtosecond X-ray pulses. Structural Dynamics, 3(4). doi:10.1063/1.4944344Additional Authors: Marchenko, T.;Miron, C.;Patanen, M.;Osipov, T.;Schorb, S.;Simon, M.;Swiggers, M.;Techert, S.;Ueda, K.;Bostedt, C.;Rolles, D.;Rudenko, A.Ultrafast electron transfer in dissociating iodomethane and fluoromethane molecules was studied at the Linac Coherent Light Source free-electron laser using an ultraviolet-pump, X-ray-probe scheme. The results for both molecules are discussed with respect to the nature of their UV excitation and different chemical properties. Signatures of long-distance intramolecular charge transfer are observed for both species, and a quantitative analysis of its distance dependence in iodomethane is carried out for charge states up to I21+. The reconstructed critical distances for electron transfer are in good agreement with a classical over-the-barrier model and with an earlier experiment employing a near-infrared pump pulse. © 2016 Author(s)
Multiple ionization and fragmentation dynamics of molecular iodine studied in IR-XUV pump-probe experiments
The ionization and fragmentation dynamics of iodine molecules (I-2) are traced using very intense (similar to 10(14) W cm(-2)) ultra-short (similar to 60 fs) light pulses with 87 eV photons of the Free-electron LASer at Hamburg (FLASH) in combination with a synchronized femtosecond optical laser. Within a pump-probe scheme the IR pulse initiates a molecular fragmentation and then, after an adjustable time delay, the system is exposed to an intense FEL pulse. This way we follow the creation of highly-charged molecular fragments as a function of time, and probe the dynamics of multi-photon absorption during the transition from a molecule to individual atoms
Coulomb explosion imaging of small organic molecules at LCLS.
Fragmentation of small organic molecules by intense few-femtosecond X-ray free-electron laser pulses has been studied using Coulomb explosion imaging. By measuring kinetic energies and emission angles of the ionic fragments in coincidence, we disentangle different fragmentation pathways, for certain cases can reconstruct molecular geometry at the moment of explosion, and show how it depends on LCLS pulse duration
- …