41 research outputs found

    Optimal Estimation of Water Vapour Profiles using a Combination of Raman Lidar and Microwave Radiometer

    Get PDF
    In der vorliegenden Arbeit wird ein zweistufiger Algorithmus, das sogenannte Retrieval, zur Ableitung von Wasserdampfprofilen aus einer Kombination von Ramanlidar und Mikrowellenradiometer zur operationellen Anwendung vorgestellt. Beide Instrumente kamen während einer groß angelegten Kampagne nahe Jülich im Frühjahr 2013 zum Einsatz (HOPE). Ziel der Arbeit ist es, kontinuierliche Zeitreihen der vertikalen Wasserdampfverteilung abzuleiten. Dies erfordert eine Kalibrierung des Ramanlidars. Im Rahmen dieser Arbeit wurde ein automatisches Kalibrierschema entwickelt, welches auf dem integrierten Wasserdampfgehalt abgeleitet aus Mikrowellenradiometermessungen basiert. Die Methode zeigt eine gute Übereinstimmung mit herkömmlichen Ansätzen, welche auf Radiosondenaufstiegen beruhen. Der Kalibrierfaktor ist sehr stabil mit einer relativen Abweichung von 5 %. Diese Stabilität bietet den Vorteil, das Lidar auch unter bewölkten Bedingungen zu kalibrieren. Hierfür wird der Kalibrierfaktor des letzten wolkenfreien Zeitraums herangezogen. Dies ermöglicht die kontinuierliche Messung von Wasserdampfprofilen bis zu einer möglichen Wolkenbasis. Um verlässliche Wasserdampfinformationen innerhalb und oberhalb einer Wolke zu erhalten, wird ein zweistufiger Algorithmus angewandt. Der erste Schritt ist ein Kalman Filter, der die an der Wolkenbasis abgeschnittenen Wasserdampfprofile vom Ramanlidar mittels eines vorherigen Profils zu einem kompletten Profil (bis zu 10 km) kombiniert. Das komplette Wasserdampfprofil dient dann als Input für die eindimensionale variationelle (1D- VAR) Methode, auch als optimale Schätzung bekannt. Für dieses Profil werden die Helligkeitstemperaturen simuliert, die das Mikrowellenradiometer in der gegebenen Atmosphäre messen würde und anschließend mit den tatsächlich gemessenen verglichen. Das Profil wird dann iterativ entsprechend seiner Fehlerbalken so lange modifiziert, bis die modellierten mit den gemessenen Helligkeitstemperaturen hinreichend übereinstimmen. Die Funktionsweise des Retrievals wird mit Hilfe von Fallstudien unter verschiedenen Bedingungen detailliert beleuchtet. Eine statistische Analyse zeigt, dass die Verfügbarkeit von Ramanlidardaten (nachts) die Genauigkeit der abgeleiteten Profile verbessert. Tagsüber resultiert das Fehlen der Lidarinformationen in größeren Unterschieden zu Referenzradiosonden. Die Datenabdeckung der kompletten Lidarprofile von 17 % während der zweimonatigen Kampagne wird durch Anwendung des Retrievals auf 60 % signifikant erhöht. Da die relative Feuchte oft mals ein nützliches Maß für die Beschreibung von Wolkenbildung und Aerosolwachstum ist, wird die Bestimmung der relativen Feuchte aus den abgeleiteten Profilen unter verschiedenen Temperaturannahmen behandelt. Die Annahme eines Temperaturprofils vom Mikrowellenradiometer resultiert in einem absoluten Bias von 4.7 g/kg . Weiterhin wird in der Arbeit die flexible und vielfältige Anwendung des Retrievals an verschiedenen Messstationen in Jülich, Lindenberg und auf dem Forschungsschiff Polarstern sowie unterschiedlichen Ramanlidargeräten und Mikrowellenradiometern präsentiert. Ein besonders hervorzuhebender positiver Aspekt der Arbeit ist die Implementierung des Retrievals in die Cloudnet-Prozessierung, welche die Untersuchung von Wolken und Niederschlag bereichert. Die gewonnenen Profile werden außerdem für eine Evaluierung des Klima- und Vorhersagemodells ICON verwendet

    Optimal estimation of water vapour profiles using a combination of Raman lidar and microwave radiometer

    Get PDF
    In this work, a two-step algorithm to obtain water vapour profiles from a combination of Raman lidar and microwave radiometer is presented. Both instruments were applied during an intensive 2-month measurement campaign (HOPE) close to Julich, western Germany, during spring 2013. To retrieve reliable water vapour information from inside or above the cloud a two-step algorithm is applied. The first step is a Kalman filter that extends the profiles, truncated at cloud base, to the full height range (up to 10 km) by combining previous information and current measurement. Then the complete water vapour profile serves as input to the one-dimensional variational (1D-VAR) method, also known as optimal estimation. A forward model simulates the brightness temperatures which would be observed by the microwave radiometer for the given atmospheric state. The profile is iteratively modified according to its error bars until the modelled and the actually measured brightness temperatures sufficiently agree. The functionality of the retrieval is presented in detail by means of case studies under different conditions. A statistical analysis shows that the availability of Raman lidar data (night) improves the accuracy of the profiles even under cloudy conditions. During the day, the absence of lidar data results in larger differences in comparison to reference radiosondes. The data availability of the full-height water vapour lidar profiles of 17% during the 2-month campaign is significantly enhanced to 60% by applying the retrieval. The bias with respect to radiosonde and the retrieved a posteriori uncertainty of the retrieved profiles clearly show that the application of the Kalman filter considerably improves the accuracy and quality of the retrieved mixing ratio profiles

    The HD(CP)² Observational Prototype Experiment (HOPE) – an overview

    Get PDF
    The HD(CP)2 Observational Prototype Experiment (HOPE) was performed as a major 2-month field experiment in Jülich, Germany, in April and May 2013, followed by a smaller campaign in Melpitz, Germany, in September 2013. HOPE has been designed to provide an observational dataset for a critical evaluation of the new German community atmospheric icosahedral non-hydrostatic (ICON) model at the scale of the model simulations and further to provide information on land-surface–atmospheric boundary layer exchange, cloud and precipitation processes, as well as sub-grid variability and microphysical properties that are subject to parameterizations. HOPE focuses on the onset of clouds and precipitation in the convective atmospheric boundary layer. This paper summarizes the instrument set-ups, the intensive observation periods, and example results from both campaigns. HOPE-Jülich instrumentation included a radio sounding station, 4 Doppler lidars, 4 Raman lidars (3 of them provide temperature, 3 of them water vapour, and all of them particle backscatter data), 1 water vapour differential absorption lidar, 3 cloud radars, 5 microwave radiometers, 3 rain radars, 6 sky imagers, 99 pyranometers, and 5 sun photometers operated at different sites, some of them in synergy. The HOPE-Melpitz campaign combined ground-based remote sensing of aerosols and clouds with helicopter- and balloon-based in situ observations in the atmospheric column and at the surface. HOPE provided an unprecedented collection of atmospheric dynamical, thermodynamical, and micro- and macrophysical properties of aerosols, clouds, and precipitation with high spatial and temporal resolution within a cube of approximately 10  ×  10  ×  10 km3. HOPE data will significantly contribute to our understanding of boundary layer dynamics and the formation of clouds and precipitation. The datasets have been made available through a dedicated data portal. First applications of HOPE data for model evaluation have shown a general agreement between observed and modelled boundary layer height, turbulence characteristics, and cloud coverage, but they also point to significant differences that deserve further investigations from both the observational and the modelling perspective

    Optimal Estimation of Water Vapour Profiles using a Combination of Raman Lidar and Microwave Radiometer

    Get PDF
    In der vorliegenden Arbeit wird ein zweistufiger Algorithmus, das sogenannte Retrieval, zur Ableitung von Wasserdampfprofilen aus einer Kombination von Ramanlidar und Mikrowellenradiometer zur operationellen Anwendung vorgestellt. Beide Instrumente kamen während einer groß angelegten Kampagne nahe Jülich im Frühjahr 2013 zum Einsatz (HOPE). Ziel der Arbeit ist es, kontinuierliche Zeitreihen der vertikalen Wasserdampfverteilung abzuleiten. Dies erfordert eine Kalibrierung des Ramanlidars. Im Rahmen dieser Arbeit wurde ein automatisches Kalibrierschema entwickelt, welches auf dem integrierten Wasserdampfgehalt abgeleitet aus Mikrowellenradiometermessungen basiert. Die Methode zeigt eine gute Übereinstimmung mit herkömmlichen Ansätzen, welche auf Radiosondenaufstiegen beruhen. Der Kalibrierfaktor ist sehr stabil mit einer relativen Abweichung von 5 %. Diese Stabilität bietet den Vorteil, das Lidar auch unter bewölkten Bedingungen zu kalibrieren. Hierfür wird der Kalibrierfaktor des letzten wolkenfreien Zeitraums herangezogen. Dies ermöglicht die kontinuierliche Messung von Wasserdampfprofilen bis zu einer möglichen Wolkenbasis. Um verlässliche Wasserdampfinformationen innerhalb und oberhalb einer Wolke zu erhalten, wird ein zweistufiger Algorithmus angewandt. Der erste Schritt ist ein Kalman Filter, der die an der Wolkenbasis abgeschnittenen Wasserdampfprofile vom Ramanlidar mittels eines vorherigen Profils zu einem kompletten Profil (bis zu 10 km) kombiniert. Das komplette Wasserdampfprofil dient dann als Input für die eindimensionale variationelle (1D- VAR) Methode, auch als optimale Schätzung bekannt. Für dieses Profil werden die Helligkeitstemperaturen simuliert, die das Mikrowellenradiometer in der gegebenen Atmosphäre messen würde und anschließend mit den tatsächlich gemessenen verglichen. Das Profil wird dann iterativ entsprechend seiner Fehlerbalken so lange modifiziert, bis die modellierten mit den gemessenen Helligkeitstemperaturen hinreichend übereinstimmen. Die Funktionsweise des Retrievals wird mit Hilfe von Fallstudien unter verschiedenen Bedingungen detailliert beleuchtet. Eine statistische Analyse zeigt, dass die Verfügbarkeit von Ramanlidardaten (nachts) die Genauigkeit der abgeleiteten Profile verbessert. Tagsüber resultiert das Fehlen der Lidarinformationen in größeren Unterschieden zu Referenzradiosonden. Die Datenabdeckung der kompletten Lidarprofile von 17 % während der zweimonatigen Kampagne wird durch Anwendung des Retrievals auf 60 % signifikant erhöht. Da die relative Feuchte oft mals ein nützliches Maß für die Beschreibung von Wolkenbildung und Aerosolwachstum ist, wird die Bestimmung der relativen Feuchte aus den abgeleiteten Profilen unter verschiedenen Temperaturannahmen behandelt. Die Annahme eines Temperaturprofils vom Mikrowellenradiometer resultiert in einem absoluten Bias von 4.7 g/kg . Weiterhin wird in der Arbeit die flexible und vielfältige Anwendung des Retrievals an verschiedenen Messstationen in Jülich, Lindenberg und auf dem Forschungsschiff Polarstern sowie unterschiedlichen Ramanlidargeräten und Mikrowellenradiometern präsentiert. Ein besonders hervorzuhebender positiver Aspekt der Arbeit ist die Implementierung des Retrievals in die Cloudnet-Prozessierung, welche die Untersuchung von Wolken und Niederschlag bereichert. Die gewonnenen Profile werden außerdem für eine Evaluierung des Klima- und Vorhersagemodells ICON verwendet

    Optimal Estimation of Water Vapour Profiles using a Combination of Raman Lidar and Microwave Radiometer

    No full text
    In der vorliegenden Arbeit wird ein zweistufiger Algorithmus, das sogenannte Retrieval, zur Ableitung von Wasserdampfprofilen aus einer Kombination von Ramanlidar und Mikrowellenradiometer zur operationellen Anwendung vorgestellt. Beide Instrumente kamen während einer groß angelegten Kampagne nahe Jülich im Frühjahr 2013 zum Einsatz (HOPE). Ziel der Arbeit ist es, kontinuierliche Zeitreihen der vertikalen Wasserdampfverteilung abzuleiten. Dies erfordert eine Kalibrierung des Ramanlidars. Im Rahmen dieser Arbeit wurde ein automatisches Kalibrierschema entwickelt, welches auf dem integrierten Wasserdampfgehalt abgeleitet aus Mikrowellenradiometermessungen basiert. Die Methode zeigt eine gute Übereinstimmung mit herkömmlichen Ansätzen, welche auf Radiosondenaufstiegen beruhen. Der Kalibrierfaktor ist sehr stabil mit einer relativen Abweichung von 5 %. Diese Stabilität bietet den Vorteil, das Lidar auch unter bewölkten Bedingungen zu kalibrieren. Hierfür wird der Kalibrierfaktor des letzten wolkenfreien Zeitraums herangezogen. Dies ermöglicht die kontinuierliche Messung von Wasserdampfprofilen bis zu einer möglichen Wolkenbasis. Um verlässliche Wasserdampfinformationen innerhalb und oberhalb einer Wolke zu erhalten, wird ein zweistufiger Algorithmus angewandt. Der erste Schritt ist ein Kalman Filter, der die an der Wolkenbasis abgeschnittenen Wasserdampfprofile vom Ramanlidar mittels eines vorherigen Profils zu einem kompletten Profil (bis zu 10 km) kombiniert. Das komplette Wasserdampfprofil dient dann als Input für die eindimensionale variationelle (1D- VAR) Methode, auch als optimale Schätzung bekannt. Für dieses Profil werden die Helligkeitstemperaturen simuliert, die das Mikrowellenradiometer in der gegebenen Atmosphäre messen würde und anschließend mit den tatsächlich gemessenen verglichen. Das Profil wird dann iterativ entsprechend seiner Fehlerbalken so lange modifiziert, bis die modellierten mit den gemessenen Helligkeitstemperaturen hinreichend übereinstimmen. Die Funktionsweise des Retrievals wird mit Hilfe von Fallstudien unter verschiedenen Bedingungen detailliert beleuchtet. Eine statistische Analyse zeigt, dass die Verfügbarkeit von Ramanlidardaten (nachts) die Genauigkeit der abgeleiteten Profile verbessert. Tagsüber resultiert das Fehlen der Lidarinformationen in größeren Unterschieden zu Referenzradiosonden. Die Datenabdeckung der kompletten Lidarprofile von 17 % während der zweimonatigen Kampagne wird durch Anwendung des Retrievals auf 60 % signifikant erhöht. Da die relative Feuchte oft mals ein nützliches Maß für die Beschreibung von Wolkenbildung und Aerosolwachstum ist, wird die Bestimmung der relativen Feuchte aus den abgeleiteten Profilen unter verschiedenen Temperaturannahmen behandelt. Die Annahme eines Temperaturprofils vom Mikrowellenradiometer resultiert in einem absoluten Bias von 4.7 g/kg . Weiterhin wird in der Arbeit die flexible und vielfältige Anwendung des Retrievals an verschiedenen Messstationen in Jülich, Lindenberg und auf dem Forschungsschiff Polarstern sowie unterschiedlichen Ramanlidargeräten und Mikrowellenradiometern präsentiert. Ein besonders hervorzuhebender positiver Aspekt der Arbeit ist die Implementierung des Retrievals in die Cloudnet-Prozessierung, welche die Untersuchung von Wolken und Niederschlag bereichert. Die gewonnenen Profile werden außerdem für eine Evaluierung des Klima- und Vorhersagemodells ICON verwendet

    Optimal estimation of water vapour profiles using a combination of Raman lidar and microwave radiometer

    No full text
    In this work, a two-step algorithm to obtain water vapour profiles from a combination of Raman lidar and microwave radiometer is presented. Both instruments were applied during an intensive 2-month measurement campaign (HOPE) close to Julich, western Germany, during spring 2013. To retrieve reliable water vapour information from inside or above the cloud a two-step algorithm is applied. The first step is a Kalman filter that extends the profiles, truncated at cloud base, to the full height range (up to 10 km) by combining previous information and current measurement. Then the complete water vapour profile serves as input to the one-dimensional variational (1D-VAR) method, also known as optimal estimation. A forward model simulates the brightness temperatures which would be observed by the microwave radiometer for the given atmospheric state. The profile is iteratively modified according to its error bars until the modelled and the actually measured brightness temperatures sufficiently agree. The functionality of the retrieval is presented in detail by means of case studies under different conditions. A statistical analysis shows that the availability of Raman lidar data (night) improves the accuracy of the profiles even under cloudy conditions. During the day, the absence of lidar data results in larger differences in comparison to reference radiosondes. The data availability of the full-height water vapour lidar profiles of 17% during the 2-month campaign is significantly enhanced to 60% by applying the retrieval. The bias with respect to radiosonde and the retrieved a posteriori uncertainty of the retrieved profiles clearly show that the application of the Kalman filter considerably improves the accuracy and quality of the retrieved mixing ratio profiles
    corecore