3,629 research outputs found

    Implicit Simulations using Messaging Protocols

    Full text link
    A novel algorithm for performing parallel, distributed computer simulations on the Internet using IP control messages is introduced. The algorithm employs carefully constructed ICMP packets which enable the required computations to be completed as part of the standard IP communication protocol. After providing a detailed description of the algorithm, experimental applications in the areas of stochastic neural networks and deterministic cellular automata are discussed. As an example of the algorithms potential power, a simulation of a deterministic cellular automaton involving 10^5 Internet connected devices was performed.Comment: 14 pages, 3 figure

    Study of Systems and Technology for Liquid Hydrogen Production Independent of Fossil Fuels

    Get PDF
    Based on Kennedy Space Center siting and logistics requirements and the nonfossil energy resources at the Center, a number of applicable technologies and system candidates for hydrogen production were identified and characterized. A two stage screening of these technologies in the light of specific criteria identified two leading candidates as nonfossil system approaches. Conceptual design and costing of two solar-operated, stand alone systems, one photovoltaic based on and the other involving the power tower approach reveals their technical feasibility as sited as KSC, and the potential for product cost competitiveness with conventional supply approaches in the 1990 to 1210 time period. Conventional water hydrolysis and hydrogen liquefaction subsystems are integrated with the solar subsystems

    An exploratory randomised controlled trial of a premises-level intervention to reduce alcohol-related harm including violence in the United Kingdom

    Get PDF
    <b>Background</b><p></p> To assess the feasibility of a randomised controlled trial of a licensed premises intervention to reduce severe intoxication and disorder; to establish effect sizes and identify appropriate approaches to the development and maintenance of a rigorous research design and intervention implementation.<p></p> <b>Methods</b><p></p> An exploratory two-armed parallel randomised controlled trial with a nested process evaluation. An audit of risk factors and a tailored action plan for high risk premises, with three month follow up audit and feedback. Thirty-two premises that had experienced at least one assault in the year prior to the intervention were recruited, match paired and randomly allocated to control or intervention group. Police violence data and data from a street survey of study premises’ customers, including measures of breath alcohol concentration and surveyor rated customer intoxication, were used to assess effect sizes for a future definitive trial. A nested process evaluation explored implementation barriers and the fidelity of the intervention with key stakeholders and senior staff in intervention premises using semi-structured interviews.<p></p> <b>Results</b><p></p> The process evaluation indicated implementation barriers and low fidelity, with a reluctance to implement the intervention and to submit to a formal risk audit. Power calculations suggest the intervention effect on violence and subjective intoxication would be raised to significance with a study size of 517 premises.<p></p> <b>Conclusions</b><p></p> It is methodologically feasible to conduct randomised controlled trials where licensed premises are the unit of allocation. However, lack of enthusiasm in senior premises staff indicates the need for intervention enforcement, rather than voluntary agreements, and on-going strategies to promote sustainability

    Isolation by Distance Explains Genetic Structure of Buggy Creek Virus, a Bird-Associated Arbovirus

    Get PDF
    Many of the arthropod-borne viruses (arboviruses) show extensive genetic variability and are widely distributed over large geographic areas. Understanding how virus genetic structure varies in space may yield insight into how these pathogens are adapted to and dispersed by different hosts or vectors, the relative importance of mutation, drift, or selection in generating genetic variability, and where and when epidemics or epizootics are most likely to occur. However, because most arboviruses tend to be sampled opportunistically and often cannot be isolated in large numbers at a given locale, surprisingly little is known about their spatial genetic structure on the local scale at which host/vector/virus interactions typically occur. Here, we examine fine-scale spatial structure of two sympatric lineages of Buggy Creek virus (BCRV, Togaviridae), an alphavirus transmitted by the ectoparasitic swallow bug (Oeciacus vicarius) to colonially nesting cliff swallows (Petrochelidon pyrrhonota) and invasive house sparrows (Passer domesticus) in North America. Data from 377 BCRV isolates at cliff swallow colony sites in western Nebraska showed that both virus lineages were geographically structured. Most haplotypes were detected at a single colony or were shared among nearby colonies, and pair-wise genetic distance increased significantly with geographic distance between colony sites. Genetic structure of both lineages is consistent with isolation by distance. Sites with the most genetically distinct BCRV isolates were occupied by large numbers of house sparrows, suggesting that concentrations of invasive sparrows may represent foci for evolutionary change in BCRV. Our results show that bird-associated arboviruses can show genetic substructure over short geographic distances

    Isolation by Distance Explains Genetic Structure of Buggy Creek Virus, a Bird-Associated Arbovirus

    Get PDF
    Many of the arthropod-borne viruses (arboviruses) show extensive genetic variability and are widely distributed over large geographic areas. Understanding how virus genetic structure varies in space may yield insight into how these pathogens are adapted to and dispersed by different hosts or vectors, the relative importance of mutation, drift, or selection in generating genetic variability, and where and when epidemics or epizootics are most likely to occur. However, because most arboviruses tend to be sampled opportunistically and often cannot be isolated in large numbers at a given locale, surprisingly little is known about their spatial genetic structure on the local scale at which host/vector/virus interactions typically occur. Here, we examine fine-scale spatial structure of two sympatric lineages of Buggy Creek virus (BCRV, Togaviridae), an alphavirus transmitted by the ectoparasitic swallow bug (Oeciacus vicarius) to colonially nesting cliff swallows (Petrochelidon pyrrhonota) and invasive house sparrows (Passer domesticus) in North America. Data from 377 BCRV isolates at cliff swallow colony sites in western Nebraska showed that both virus lineages were geographically structured. Most haplotypes were detected at a single colony or were shared among nearby colonies, and pair-wise genetic distance increased significantly with geographic distance between colony sites. Genetic structure of both lineages is consistent with isolation by distance. Sites with the most genetically distinct BCRV isolates were occupied by large numbers of house sparrows, suggesting that concentrations of invasive sparrows may represent foci for evolutionary change in BCRV. Our results show that bird-associated arboviruses can show genetic substructure over short geographic distances

    Metabolic Rift or Metabolic Shift? Dialectics, Nature, and the World-Historical Method

    Get PDF
    Abstract In the flowering of Red-Green Thought over the past two decades, metabolic rift thinking is surely one of its most colorful varieties. The metabolic rift has captured the imagination of critical environmental scholars, becoming a shorthand for capitalism’s troubled relations in the web of life. This article pursues an entwined critique and reconstruction: of metabolic rift thinking and the possibilities for a post-Cartesian perspective on historical change, the world-ecology conversation. Far from dismissing metabolic rift thinking, my intention is to affirm its dialectical core. At stake is not merely the mode of explanation within environmental sociology. The impasse of metabolic rift thinking is suggestive of wider problems across the environmental social sciences, now confronted by a double challenge. One of course is the widespread—and reasonable—sense of urgency to evolve modes of thought appropriate to an era of deepening biospheric instability. The second is the widely recognized—but inadequately internalized—understanding that humans are part of nature

    Prioritized Sweeping Neural DynaQ with Multiple Predecessors, and Hippocampal Replays

    Full text link
    During sleep and awake rest, the hippocampus replays sequences of place cells that have been activated during prior experiences. These have been interpreted as a memory consolidation process, but recent results suggest a possible interpretation in terms of reinforcement learning. The Dyna reinforcement learning algorithms use off-line replays to improve learning. Under limited replay budget, a prioritized sweeping approach, which requires a model of the transitions to the predecessors, can be used to improve performance. We investigate whether such algorithms can explain the experimentally observed replays. We propose a neural network version of prioritized sweeping Q-learning, for which we developed a growing multiple expert algorithm, able to cope with multiple predecessors. The resulting architecture is able to improve the learning of simulated agents confronted to a navigation task. We predict that, in animals, learning the world model should occur during rest periods, and that the corresponding replays should be shuffled.Comment: Living Machines 2018 (Paris, France

    Cohesive energies of cubic III-V semiconductors

    Full text link
    Cohesive energies for twelve cubic III-V semiconductors with zincblende structure have been determined using an ab-initio scheme. Correlation contributions, in particular, have been evaluated using the coupled-cluster approach with single and double excitations (CCSD). This was done by means of increments obtained for localized bond orbitals and for pairs and triples of such bonds. Combining these results with corresponding Hartree-Fock data, we recover about 92 \% of the experimental cohesive energies.Comment: 16 pages, 1 figure, late

    Ecological divergence of two sympatric lineages of Buggy Creek virus, an arbovirus associated with birds

    Get PDF
    Most arthropod-borne viruses (arboviruses) show distinct serological subtypes or evolutionary lineages, with the evolution of different strains often assumed to reflect differences in ecological selection pressures. Buggy Creek virus (BCRV) is an unusual RNA virus (Togaviridae, Alphavirus) that is associated primarily with a cimicid swallow bug (Oeciacus vicarius) as its vector and the Cliff Swallow (Petrochelidon pyrrhonota) and the introduced House Sparrow (Passer domesticus) as its amplifying hosts. There are two sympatric lineages of BCRV (lineages A and B) that differ from each other by .6% at the nucleotide level. Analysis of 385 BCRV isolates all collected from bug vectors at a study site in southwestern Nebraska, USA, showed that the lineages differed in their peak times of seasonal occurrence within a summer. Lineage A was more likely to be found at recently established colonies, at those in culverts (rather than on highway bridges), and at those with invasive House Sparrows, and in bugs on the outsides of nests. Genetic diversity of lineage A increased with bird colony size and at sites with House Sparrows, while that of lineage B decreased with colony size and was unaffected by House Sparrows. Lineage A was more cytopathic on mammalian cells than was lineage B. These two lineages have apparently diverged in their transmission dynamics, with lineage A possibly more dependent on birds and lineage B perhaps more a bug virus. The long-standing association between Cliff Swallows and BCRV may have selected for immunological resistance to the virus by swallows and thus promoted the evolution of the more bug-adapted lineage B. In contrast, the recent arrival of the introduced House Sparrow and its high competence as a BCRV amplifying host may be favoring the more bird-dependent lineage A

    The fading of Cassiopeia A, and improved models for the absolute spectrum of primary radio calibration sources

    Get PDF
    Based on five years of observations with the 40-foot telescope at Green Bank Observatory (GBO), Reichart & Stephens (2000) found that the radio source Cassiopeia A had either faded more slowly between the mid-1970s and late 1990s than Baars et al. (1977) had found it to be fading between the late 1940s and mid-1970s, or that it had rebrightened and then resumed fading sometime between the mid-1970s and mid-1990s, in L band (1.4 GHz). Here, we present 15 additional years of observations of Cas A and Cyg A with the 40-foot in L band, and three and a half additional years of observations of Cas A, Cyg A, Tau A, and Vir A with GBO's recently refurbished 20-meter telescope in L and X (9 GHz) bands. We also present a more sophisticated analysis of the 40-foot data, and a reanalysis of the Baars et al. (1977) data, which reveals small, but non-negligible differences. We find that overall, between the late 1950s and late 2010s, Cas A faded at an average rate of 0.670±0.0190.670 \pm 0.019 %/yr in L band, consistent with Reichart & Stephens (2000). However, we also find, at the 6.3σ\sigma credible level, that it did not fade at a constant rate. Rather, Cas A faded at a faster rate through at least the late 1960s, rebrightened (or at least faded at a much slower rate), and then resumed fading at a similarly fast rate by, at most, the late 1990s. Given these differences from the original Baars et al. (1977) analysis, and given the importance of their fitted spectral and temporal models for flux-density calibration in radio astronomy, we update and improve on these models for all four of these radio sources. In doing so, we additionally find that Tau A is fading at a rate of 0.1020.043+0.0420.102^{+0.042}_{-0.043} %/yr in L band.Comment: 17 pages, 12 figures, accepted to MNRA
    corecore