1,958 research outputs found

    Underground mining of aggregates. Main report

    Get PDF
    This report examines the economic feasibility of underground mining for crushed rock aggregates in the UK, but particularly in the London, South East and East of England regions (the South East area of England). These regions import substantial volumes of crushed rock, primarily from the East Midlands and South West regions, requiring relatively long transport distances to market for this bulk commodity. A key part of the research was to determine whether or not aggregate could be produced and delivered to a local market from an underground aggregates operation at a cost comparable with that for production and transport of the commodity from traditional surface quarries located further afield. In essence the investigation asked – could the reduced transport costs compensate for the higher production costs underground so that underground crushed rock aggregates producers can compete with the established Leicestershire and Somerset surface quarries exporting to the South East? Work Programme The research effort involved establishing and verifying cost models for aggregates production, stone processing (sizing and sorting), haulage of product to market, environmental impact mitigation, health and safety, decommissioning and restoration. Another major element of the work was the re-examination of the BGS exploratory borehole and geophysical databases to identify potential areas of crushed rock aggregates resource at depth in the South East area of England. Land use pressure is typically higher in this area of England than elsewhere so another major part of the research was the identification of potential concurrent uses of land around the surface facilities of underground aggregates mines. The value, development costs for specific developments and determination of yields expected, from these uses were estimated. These were also used to investigate potential economic benefits associated with after uses of remediated surface land above potential underground aggregates mines and also for the new underground space that would be created. Key technical issues such as subsidence within relatively heavily populated areas of the South East area of England were also addressed. Economic Results The discounted cost of aggregate delivered at a discount rate of 10% was the metric used to appraise the options. This is the price of aggregate that leads to a zero net present value of project cash flows realised over the aggregates project life. The results show that the discounted costs of aggregate delivered to a local South East area of England market from an underground mine producing 3.5 million tonnes per annum (MTPA) of crushed rock aggregates, are in the range of £13.03 per tonne to £13.93 per tonne for the top six prospect locations. These are greater than the corresponding cost for a “reference” quarry in Leicestershire producing 3.5 MTPA (£10.95 per tonne), but lower than a “reference” quarry in Leicestershire producing 1.25 MTPA (£16.48 per tonne). These figures indicate that underground crushed rock aggregate mines located within the South East area of England may be able to compete for a share in the overall market by replacing / displacing aggregate imported from the quarries in Leicestershire and Somerset producing around or less than 1.25 MTPA. The surprise in these figures is not really that the more remote surface quarry has a lower discounted cost of aggregate delivered, but that the values for the quarry and underground mine are so close. The capital intensity for the development of underground aggregates mines was found to be higher than that required for surface quarries of comparable scale, by a factor ranging from 1.33 to 1.65 and thus may represent a disincentive for aggregates operators. Carbon Emissions The total carbon emissions of the ‘reference’ 3.5 MTPA quarry in Leicestershire were estimated at 9.28 kg CO2/tonne aggregate delivered and this is to be compared with carbon emissions for the 150 metre deep underground mines serving the local market which were estimated at 9.31 kg CO2/tonne delivered for a Bletchley prospect using an adit to access the sub-surface and 14.25 kg CO2/tonne delivered for a prospect based on the Chitty bore hole using a shaft. Depth of the mine is a key factor in determination of the relative carbon emissions from each of the underground mining operations considered as electricity consumption for ventilation, pumping and winding is proportional to depth. Recommendations The current research generated seven principal recommendations which are discussed in detail in the concluding section of the report. These are: Appraise policy incentives for underground aggregates mining. Conduct an industry-wide consultation on findings from the current research. Obtain public and stakeholder opinion on new uses for underground space. Conduct research to reducing the energy intensity of mine services. Develop a deep level aggregates-specific drilling campaign. Investigate underground aggregates mines developed from existing surface quarries. Investigate underground aggregates as co-products of industrial minerals mining

    Assessment of the Mate Retention Inventory-Short Form Using Item Response Theory

    Get PDF
    The mate retention inventory (MRI) has been a valuable tool in the field of evolutionary psychology for the past 30 years. The goal of the current research is to subject the MRI to rigorous psychometric analysis using item response theory to answer three broad questions. Do the individual items of the MRI fit the scale well? Does the overall function of the MRI match what is predicted? Finally, do men and women respond similarly to the MRI? Using a graded response model, it was found that all but two of the items fit acceptable model patterns. Test information function analysis found that the scale acceptably captures individual differences for participants with a high degree of mate retention but the scale is lacking in capturing information from participants with a low degree of mate retention. Finally, discriminate item function analysis reveals that the MRI is better at assessing male than female participants, indicating that the scale may not be the best indicator of female behavior in a relationship. Overall, we conclude that the MRI is a good scale, especially for assessing male behavior, but it could be improved for assessing female behavior and individuals lower on overall mate retention behavior. It is suggested that this paper be used as a framework for how the newest psychometrics techniques can be applied in order to create more robust and valid measures in the field of evolutionary psychology

    New Evidence for Efficient Collisionless Heating of Electrons at the Reverse Shock of a Young Supernova Remnant

    Get PDF
    Although collisionless shocks are ubiquitous in astrophysics, certain key aspects of them are not well understood. In particular, the process known as collisionless electron heating, whereby electrons are rapidly energized at the shock front, is one of the main open issues in shock physics. Here we present the first clear evidence for efficient collisionless electron heating at the reverse shock of Tycho's supernova remnant (SNR), revealed by Fe-K diagnostics using high-quality X-ray data obtained by the Suzaku satellite. We detect K-beta (3p->1s) fluorescence emission from low-ionization Fe ejecta excited by energetic thermal electrons at the reverse shock front, which peaks at a smaller radius than Fe K-alpha (2p->1s) emission dominated by a relatively highly-ionized component. Comparison with our hydrodynamical simulations implies instantaneous electron heating to a temperature 1000 times higher than expected from Coulomb collisions alone. The unique environment of the reverse shock, which is propagating with a high Mach number into rarefied ejecta with a low magnetic field strength, puts strong constraints on the physical mechanism responsible for this heating, and favors a cross-shock potential created by charge deflection at the shock front. Our sensitive observation also reveals that the reverse shock radius of this SNR is about 10% smaller than the previous measurement using the Fe K-alpha morphology from the Chandra observations. Since strong Fe K-beta fluorescence is expected only from low-ionization plasma where Fe ions still have many 3p electrons, this feature is key to diagnosing the plasma state and distribution of the immediate postshock ejecta in a young SNR.Comment: 7 pages, 9 figures, resubmitted to ApJ with minor changes following the referee repor

    Challenges and opportunities in polysaccharides research and technology: The EPNOE views for the next decade in the areas of materials, food and health care

    No full text
    International audienceThe European Polysaccharide Network of Excellence (EPNOE) is a research and education network connecting 16 academic and research institutions and a large number of companies with its focus on polysaccharide expertise development and polysaccharide-related research for innovation in business and industry. EPNOE has two main missions in the field of polysaccharide applications in materials, food, and pharmacy/medicine, which are to organise education in polysaccharide science and to perform basic and applied research for the development of new products derived from polysaccharides. In 2009, the EPNOE network prepared a research road map vision to 2020 focussed on polysaccharide use in material structuring, food and health, taking both research and education into consideration. The research road map was prepared from various social, political, industrial and scientific inputs coming from within and outside EPNOE: (1) results of four brain-storming sessions by EPNOE scientists and students, (2) individual contributions of EPNOE scientists and (3) individual contributions of scientists outside EPNOE through an internet review. The result is described in this article

    The Effects of Body Tempering on Force Production, Flexibility and Muscle Soreness in Collegiate Football Athletes

    Get PDF
    There has been limited research to explore the use of body tempering and when the use of this modality would be most appropriate. This study aimed to determine if a body tempering intervention would be appropriate pre-exercise by examining its effects on perceived soreness, range of motion (ROM), and force production compared to an intervention of traditional stretching. The subjects for this study were ten Division 1 (D1) football linemen from Sacred Heart University (Age: 19.9 ± 1.5 years, body mass: 130.9 ± 12.0 kg, height: 188.4 ± 5.1 cm, training age: 8.0 ± 3.5 years). Subjects participated in three sessions with the first session being baseline testing. The second and third sessions involved the participants being randomized to receive either the body tempering or stretching intervention for the second session and then receiving the other intervention the final week. Soreness using a visual analog scale (VAS), ROM, counter movement jump (CMJ) peak force and jump height, static jump (SJ) peak force and jump height, and isometric mid-thigh pull max force production were assessed. The results of the study concluded that body tempering does not have a negative effect on muscle performance but did practically reduce perceived muscle soreness. Since body tempering is effective at reducing soreness in athletes, it can be recommended for athletes as part of their pre-exercise warmup without negatively effecting isometric or dynamic force production

    Genomics reveals historic and contemporary transmission dynamics of a bacterial disease among wildlife and livestock

    Get PDF
    Whole-genome sequencing has provided fundamental insights into infectious disease epidemiology, but has rarely been used for examining transmission dynamics of a bacterial pathogen in wildlife. In the Greater Yellowstone Ecosystem (GYE), outbreaks of brucellosis have increased in cattle along with rising seroprevalence in elk. Here we use a genomic approach to examine Brucella abortus evolution, cross-species transmission and spatial spread in the GYE. We find that brucellosis was introduced into wildlife in this region at least five times. The diffusion rate varies among Brucella lineages (∼3 to 8 km per year) and over time. We also estimate 12 host transitions from bison to elk, and 5 from elk to bison. Our results support the notion that free-ranging elk are currently a self-sustaining brucellosis reservoir and the source of livestock infections, and that control measures in bison are unlikely to affect the dynamics of unrelated strains circulating in nearby elk populations

    Treatment with Glucocorticoids or Calcineurin Inhibitors in Primary FSGS

    Get PDF
    In primary FSGS, calcineurin inhibitors have primarily been studied in patients deemed resistant to glucocorticoid therapy. Few data are available about their use early in the treatment of FSGS. We sought to estimate the association between choice of therapy and ESRD in primary FSGS

    Soil respiration in a northeastern US temperate forest: a 22‐year synthesis

    Get PDF
    To better understand how forest management, phenology, vegetation type, and actual and simulated climatic change affect seasonal and inter‐annual variations in soil respiration (Rs), we analyzed more than 100,000 individual measurements of soil respiration from 23 studies conducted over 22 years at the Harvard Forest in Petersham, Massachusetts, USA. We also used 24 site‐years of eddy‐covariance measurements from two Harvard Forest sites to examine the relationship between soil and ecosystem respiration (Re). Rs was highly variable at all spatial (respiration collar to forest stand) and temporal (minutes to years) scales of measurement. The response of Rs to experimental manipulations mimicking aspects of global change or aimed at partitioning Rs into component fluxes ranged from −70% to +52%. The response appears to arise from variations in substrate availability induced by changes in the size of soil C pools and of belowground C fluxes or in environmental conditions. In some cases (e.g., logging, warming), the effect of experimental manipulations on Rs was transient, but in other cases the time series were not long enough to rule out long‐term changes in respiration rates. Inter‐annual variations in weather and phenology induced variation among annual Rs estimates of a magnitude similar to that of other drivers of global change (i.e., invasive insects, forest management practices, N deposition). At both eddy‐covariance sites, aboveground respiration dominated Re early in the growing season, whereas belowground respiration dominated later. Unusual aboveground respiration patterns—high apparent rates of respiration during winter and very low rates in mid‐to‐late summer—at the Environmental Measurement Site suggest either bias in Rs and Re estimates caused by differences in the spatial scale of processes influencing fluxes, or that additional research on the hard‐to‐measure fluxes (e.g., wintertime Rs, unaccounted losses of CO2 from eddy covariance sites), daytime and nighttime canopy respiration and its impacts on estimates of Re, and independent measurements of flux partitioning (e.g., aboveground plant respiration, isotopic partitioning) may yield insight into the unusually high and low fluxes. Overall, however, this data‐rich analysis identifies important seasonal and experimental variations in Rs and Re and in the partitioning of Re above‐ vs. belowground

    Soil respiration in a northeastern US temperate forest: a 22‐year synthesis

    Get PDF
    To better understand how forest management, phenology, vegetation type, and actual and simulated climatic change affect seasonal and inter‐annual variations in soil respiration (Rs), we analyzed more than 100,000 individual measurements of soil respiration from 23 studies conducted over 22 years at the Harvard Forest in Petersham, Massachusetts, USA. We also used 24 site‐years of eddy‐covariance measurements from two Harvard Forest sites to examine the relationship between soil and ecosystem respiration (Re). Rs was highly variable at all spatial (respiration collar to forest stand) and temporal (minutes to years) scales of measurement. The response of Rs to experimental manipulations mimicking aspects of global change or aimed at partitioning Rs into component fluxes ranged from −70% to +52%. The response appears to arise from variations in substrate availability induced by changes in the size of soil C pools and of belowground C fluxes or in environmental conditions. In some cases (e.g., logging, warming), the effect of experimental manipulations on Rs was transient, but in other cases the time series were not long enough to rule out long‐term changes in respiration rates. Inter‐annual variations in weather and phenology induced variation among annual Rs estimates of a magnitude similar to that of other drivers of global change (i.e., invasive insects, forest management practices, N deposition). At both eddy‐covariance sites, aboveground respiration dominated Re early in the growing season, whereas belowground respiration dominated later. Unusual aboveground respiration patterns—high apparent rates of respiration during winter and very low rates in mid‐to‐late summer—at the Environmental Measurement Site suggest either bias in Rs and Re estimates caused by differences in the spatial scale of processes influencing fluxes, or that additional research on the hard‐to‐measure fluxes (e.g., wintertime Rs, unaccounted losses of CO2 from eddy covariance sites), daytime and nighttime canopy respiration and its impacts on estimates of Re, and independent measurements of flux partitioning (e.g., aboveground plant respiration, isotopic partitioning) may yield insight into the unusually high and low fluxes. Overall, however, this data‐rich analysis identifies important seasonal and experimental variations in Rs and Re and in the partitioning of Re above‐ vs. belowground

    Interconnection of post-transcriptional regulation: The RNA-binding protein Hfq is a novel target of the Lon protease in Pseudomonas aeruginosa

    Get PDF
    Besides being a major opportunistic human pathogen, Pseudomonas aeruginosa can be found in a wide range of environments. This versatility is linked to complex regulation, which is achieved through the action of transcriptional regulators, and post-transcriptional regulation by intracellular proteases including Lon. Indeed, lon mutants in this species show defects in motility, biofilm formation, pathogenicity and fluoroquinolone resistance. Here, the proteomic approach stable isotope labeling by amino acids in cell culture (SILAC) was used to search for novel proteolytic targets. One of the proteins that accumulated in the lon mutant was the RNA-binding protein Hfq. Further experiments demonstrated the ability of Lon to degrade Hfq in vitro. Also, overexpression of the hfq gene in the wild-type strain led to partial inhibition of swarming, swimming and twitching motilities, indicating that Hfq accumulation could contribute to the phenotypes displayed by Lon mutants. Hfq overexpression also led to the upregulation of the small regulatory RNA PhrS. Analysis of the phenotypes of strains lacking or overexpressing this sRNA indicated that the Lon protease might be indirectly regulating the levels and activity of sRNAs via Hfq. Overall, this study revealed new links in the complex regulatory chain that controls multicellular behaviours in P. aeruginosa.The work described in this paper was funded by grants from CIHR and Cystic Fibrosis Canada (CFC). E.B.M.B. was supported by a scholarship from CFC. C.d.l.F.-N. holds scholarships from the Fundación “la Caixa” and Fundación Canadá, and from Fundación Ramón Areces (Spain). R.E.W.H. holds a Canada Research Chair in Health and Genomics.Peer Reviewe
    corecore