569 research outputs found

    Future climate forcing potentially without precedent in the last 420 million years

    Get PDF
    The evolution of Earth's climate on geological timescales is largely driven by variations in the magnitude of total solar irradiance (TSI) and changes in the greenhouse gas content of the atmosphere. Here we show that the slow ∼50 Wm(−2) increase in TSI over the last ∼420 million years (an increase of ∼9 Wm(−2) of radiative forcing) was almost completely negated by a long-term decline in atmospheric CO(2). This was likely due to the silicate weathering-negative feedback and the expansion of land plants that together ensured Earth's long-term habitability. Humanity's fossil-fuel use, if unabated, risks taking us, by the middle of the twenty-first century, to values of CO(2) not seen since the early Eocene (50 million years ago). If CO(2) continues to rise further into the twenty-third century, then the associated large increase in radiative forcing, and how the Earth system would respond, would likely be without geological precedent in the last half a billion years

    Insensitivity of alkenone carbon isotopes to atmospheric CO<sub>2</sub> at low to moderate CO<sub>2</sub> levels

    Get PDF
    Atmospheric pCO2 is a critical component of the global carbon system and is considered to be the major control of Earth’s past, present and future climate. Accurate and precise reconstructions of its concentration through geological time are, therefore, crucial to our understanding of the Earth system. Ice core records document pCO2 for the past 800 kyrs, but at no point during this interval were CO2 levels higher than today. Interpretation of older pCO2 has been hampered by discrepancies during some time intervals between two of the main ocean-based proxy methods used to reconstruct pCO2: the carbon isotope fractionation that occurs during photosynthesis as recorded by haptophyte biomarkers (alkenones) and the boron isotope composition (δ11B) of foraminifer shells. Here we present alkenone and δ11B-based pCO2 reconstructions generated from the same samples from the Plio-Pleistocene at ODP Site 999 across a glacial-interglacial cycle. We find a muted response to pCO2 in the alkenone record compared to contemporaneous ice core and δ11B records, suggesting caution in the interpretation of alkenone-based records at low pCO2 levels. This is possibly caused by the physiology of CO2 uptake in the haptophytes. Our new understanding resolves some of the inconsistencies between the proxies and highlights that caution may be required when interpreting alkenone-based reconstructions of pCO2

    Large-scale culturing of Neogloboquadrina pachyderma, its growth in, and tolerance of, variable environmental conditions

    Get PDF
    The planktic foraminifera Neogloboquadrina pachyderma is a calcifying marine protist and the dominant planktic foraminifera species in the polar oceans, making it a key species in marine polar ecosystems. The calcium carbonate shells of foraminifera are widely used in palaeoclimate studies because their chemical composition reflects the seawater conditions in which they grow. This species provides unique proxy data for past surface ocean hydrography, which can provide valuable insight to future climate scenarios. However, little is known about the response of N. pachyderma to variable and changing environmental conditions. Here, we present observations from large-scale culturing experiments where temperature, salinity and carbonate chemistry were altered independently. We observed overall low mortality, calcification of new chambers and addition of secondary calcite crust in all our treatments. In-culture asexual reproduction events also allowed us to monitor the variable growth of N. pachyderma’s offspring. Several specimens had extended periods of dormancy or inactivity after which they recovered. These observations suggest that N. pachyderma can tolerate, adapt to and calcify within a wide range of environmental conditions. This has implications for the species-level response to ocean warming and acidification, for future studies aiming to culture N. pachyderma and use in palaeoenvironmental reconstruction

    Intrareef variations in Li/Mg and Sr/Ca sea surface temperature proxies in the Caribbean reef‐building coral Siderastrea siderea

    Get PDF
    Caribbean sea surface temperatures (SSTs) have increased at a rate of 0.2°C per decade since 1971, a rate double that of the mean global change. Recent investigations of the coral Siderastrea siderea on the Belize Mesoamerican Barrier Reef System (MBRS) have demonstrated that warming over the last 30 years has had a detrimental impact on calcification. Instrumental temperature records in this region are sparse, making it necessary to reconstruct longer SST records indirectly through geochemical temperature proxies. Here we investigate the skeletal Sr/Ca and Li/Mg ratios of S. siderea from two distinct reef zones (forereef and backreef) of the MBRS. Our field calibrations of S. siderea show that Li/Mg and Sr/Ca ratios are well correlated with temperature, although both ratios are 3 times more sensitive to temperature change in the forereef than in the backreef. These differences suggest that a secondary parameter also influences these SST proxies, highlighting the importance for site‐ and species‐specific SST calibrations. Application of these paleothermometers to downcore samples reveals highly uncertain reconstructed temperatures in backreef coral, but well‐matched reconstructed temperatures in forereef coral, both between Sr/Ca‐SSTs and Li/Mg‐SSTs, and in comparison to the Hadley Centre Sea Ice and Sea Surface Temperature record. Reconstructions generated from a combined Sr/Ca and Li/Mg multiproxy calibration improve the precision of these SST reconstructions. This result confirms that there are circumstances in which both Li/Mg and Sr/Ca are reliable as stand‐alone and combined proxies of sea surface temperature. However, the results also highlight that high‐precision, site‐specific calibrations remain critical for reconstructing accurate SSTs from coral‐based elemental proxies

    Intrareef variations in Li/Mg and Sr/Ca sea surface temperature proxies in the Caribbean reef-building coral Siderastrea siderea

    Get PDF
    Caribbean sea surface temperatures (SSTs) have increased at a rate of 0.2°C per decade since 1971, a rate double that of the mean global change. Recent investigations of the coral Siderastrea siderea on the Belize Mesoamerican Barrier Reef System (MBRS) have demonstrated that warming over the last 30 years has had a detrimental impact on calcification. Instrumental temperature records in this region are sparse, making it necessary to reconstruct longer SST records indirectly through geochemical temperature proxies. Here we investigate the skeletal Sr/Ca and Li/Mg ratios of S. siderea from two distinct reef zones (forereef and backreef) of the MBRS. Our field calibrations of S. siderea show that Li/Mg and Sr/Ca ratios are well correlated with temperature, although both ratios are 3 times more sensitive to temperature change in the forereef than in the backreef. These differences suggest that a secondary parameter also influences these SST proxies, highlighting the importance for site‐ and species‐specific SST calibrations. Application of these paleothermometers to downcore samples reveals highly uncertain reconstructed temperatures in backreef coral, but well‐matched reconstructed temperatures in forereef coral, both between Sr/Ca‐SSTs and Li/Mg‐SSTs, and in comparison to the Hadley Centre Sea Ice and Sea Surface Temperature record. Reconstructions generated from a combined Sr/Ca and Li/Mg multiproxy calibration improve the precision of these SST reconstructions. This result confirms that there are circumstances in which both Li/Mg and Sr/Ca are reliable as stand‐alone and combined proxies of sea surface temperature. However, the results also highlight that high‐precision, site‐specific calibrations remain critical for reconstructing accurate SSTs from coral‐based elemental proxies

    Reconstruction of Cenozoic δ11Bsw using a Gaussian process

    Get PDF
    Funding: European Research Council - 805246.The boron isotope ratio of seawater (δ11Bsw) is a parameter which must be known to reconstruct palaeo pH and CO2 from boron isotope measurements of marine carbonates. Beyond a few million years ago, δ11Bsw is likely to have been different to modern. Palaeo δ11Bsw can be estimated by simultaneously constraining the vertical gradients in foraminiferal δ11B (Δδ11B) and pH (ΔpH). A number of subtly different techniques have been used to estimate ΔpH in the past, all broadly based on assumptions about vertical gradients in oxygen, and/or carbon, or other carbonate system constraints. In this work we pull together existing data from previous studies, alongside a constraint on the rate of change of δ11Bsw from modeling. We combine this information in an overarching statistical framework called a Gaussian Process. The Gaussian Process technique allows us to bring together data and constraints on the rate of change in δ11Bsw to generate random plausible evolutions of δ11Bsw. We reconstruct δ11Bsw, and by extension palaeo pH, across the last 65Myr using this novel methodology. Reconstructed δ11Bsw is compared to other seawater isotope ratios, namely , , and δ7Li, which we also reconstruct with Gaussian Processes. Our method provides a template for incorporation of future δ11Bsw constraints, and a mechanism for propagation of uncertainty in δ11Bsw into future studies.Peer reviewe

    The first report of <i>Listeria monocytogenes</i> detected in pinnipeds

    Get PDF
    The aim of this study was to describe the pathology in seals from which Listeria monocytogenes was isolated and investigate if the lesions’ nature and severity were related to the phylogeny of isolates. L. monocytogenes was isolated from 13 of 50 (26%) dead grey seal (Halichoerus grypus) pups, six (12%) in systemic distribution, on the Isle of May, Scotland. Similar fatal L. monocytogenes-associated infections were found in a grey seal pup from Carnoustie, Scotland, and a juvenile harbour seal (Phoca vitulina) in the Netherlands. Whole genome sequencing of 15 of the L. monocytogenes isolates identified 13 multilocus sequence types belonging to the L. monocytogenes lineages I and II, but with scant phenotypic and genotypic antimicrobial resistance and limited variation in virulence factors. The phylogenetic diversity present suggests there are multiple sources of L. monocytogenes, even for seal pups born in the same colony and breeding season. This is the first description of L. monocytogenes isolated from, and detected in lesions in, pinnipeds and indicates that infection can be systemic and fatal. Therefore, listeriosis may be an emerging or overlooked disease in seals with infection originating from contamination of the marine environment.</p

    The first report of Listeria monocytogenes detected in pinnipeds

    Get PDF
    The aim of this study was to describe the pathology in seals from which Listeria monocytogenes was isolated and investigate if the lesions’ nature and severity were related to the phylogeny of isolates. L. monocytogenes was isolated from 13 of 50 (26%) dead grey seal (Halichoerus grypus) pups, six (12%) in systemic distribution, on the Isle of May, Scotland. Similar fatal L. monocytogenes-associated infections were found in a grey seal pup from Carnoustie, Scotland, and a juvenile harbour seal (Phoca vitulina) in the Netherlands. Whole genome sequencing of 15 of the L. monocytogenes isolates identified 13 multilocus sequence types belonging to the L. monocytogenes lineages I and II, but with scant phenotypic and genotypic antimicrobial resistance and limited variation in virulence factors. The phylogenetic diversity present suggests there are multiple sources of L. monocytogenes, even for seal pups born in the same colony and breeding season. This is the first description of L. monocytogenes isolated from, and detected in lesions in, pinnipeds and indicates that infection can be systemic and fatal. Therefore, listeriosis may be an emerging or overlooked disease in seals with infection originating from contamination of the marine environment.</p

    Placing our current 'hyperthermal' in the context of rapid climate change in our geological past

    Get PDF
    ‘ ... there are known knowns. These are things we know that we know. There are known unknowns. That is to say, there are things that we know we don’t know. But there are also unknown unknowns. There are things we don’t know we don’t know.’ Donald Rumsfeld 12th February 2002. This article is part of a discussion meeting issue ‘Hyperthermals: rapid and extreme global warming in our geological past’

    The pH dependency of the boron isotopic composition of diatom opal (Thalassiosira weissflogii)

    Get PDF
    The high-latitude oceans are key areas of carbon and heat exchange between the atmosphere and the ocean. As such, they are a focus of both modern oceanographic and palaeoclimate research. However, most palaeoclimate proxies that could provide a long-term perspective are based on calcareous organisms, such as foraminifera, that are scarce or entirely absent in deep-sea sediments south of 50∘ S in the Southern Ocean and north of 40∘ N in the North Pacific. As a result, proxies need to be developed for the opal-based organisms (e.g. diatoms) found at these high latitudes, which dominate the biogenic sediments recovered from these regions. Here we present a method for the analysis of the boron (B) content and isotopic composition (δ11B) of diatom opal. We apply it for the first time to evaluate the relationship between seawater pH, δ11B and B concentration ([B]) in the frustules of the diatom Thalassiosira weissflogii, cultured across a range of carbon dioxide partial pressure (pCO2) and pH values. In agreement with existing data, we find that the [B] of the cultured diatom frustules increases with increasing pH (Mejía et al., 2013). δ11B shows a relatively well defined negative trend with increasing pH, completely distinct from any other biomineral previously measured. This relationship not only has implications for the magnitude of the isotopic fractionation that occurs during boron incorporation into opal, but also allows us to explore the potential of the boron-based proxies for palaeo-pH and palaeo-CO2 reconstruction in high-latitude marine sediments that have, up until now, eluded study due to the lack of suitable carbonate material
    • …
    corecore