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Abstract The boron isotope ratio of seawater (δ11Bsw) is a parameter which must be known to reconstruct
palaeo pH and CO2 from boron isotope measurements of marine carbonates. Beyond a few million years ago,
δ11Bsw is likely to have been different to modern. Palaeo δ11Bsw can be estimated by simultaneously
constraining the vertical gradients in foraminiferal δ11B (Δδ11B) and pH (ΔpH). A number of subtly different
techniques have been used to estimate ΔpH in the past, all broadly based on assumptions about vertical gradients
in oxygen, and/or carbon, or other carbonate system constraints. In this work we pull together existing data from
previous studies, alongside a constraint on the rate of change of δ11Bsw from modeling. We combine this
information in an overarching statistical framework called a Gaussian Process. The Gaussian Process technique
allows us to bring together data and constraints on the rate of change in δ11Bsw to generate random plausible
evolutions of δ11Bsw. We reconstruct δ11Bsw, and by extension palaeo pH, across the last 65Myr using this novel
methodology. Reconstructed δ11Bsw is compared to other seawater isotope ratios, namely 87/86Sr, 187/188Os, and
δ7Li, which we also reconstruct with Gaussian Processes. Our method provides a template for incorporation of
future δ11Bsw constraints, and a mechanism for propagation of uncertainty in δ11Bsw into future studies.

Plain Language Summary Boron naturally exists in two forms—11B and 10B. Measuring the ratio of
these two forms of boron within marine shells allows us to estimate how alkaline the ocean was in the past,
which is related to how much carbon dioxide is in the atmosphere. Before we can do this calculation though, we
need to know some other parameters, one of which is the relative abundance of the two forms of boron in the
ocean at the time (which we call δ11Bsw). Preexisting studies have estimated δ11Bsw at particular times, and here
we combine them to generate a full reconstruction across the last 65 million years, accounting for uncertainties.
Our reconstruction is informed by limiting the rate at which δ11Bsw can change, based on model simulations. We
provide a set of plausible evolutions of δ11Bsw which can be used in future work when calculating past ocean pH.

1. Introduction
Boron and its two isotopes (10B and 11B) exist in seawater with speciation governed by acid‐base equilibrium.
There are four degrees of freedom in the boron isotope system, which we typically express with the following five
parameters: δ11B4 (the isotopic composition of borate), δ11Bsw (the isotope composition of seawater), ɛ (the
fractionation factor), pK∗

B (the apparent equilibrium constant for boron in solution), and pH. Knowing any four of
these parameters allows us to calculate the fifth (Zeebe &Wolf‐Gladrow, 2001). For a typical paleoclimatological
application, we wish to determine palaeo pH, which is done by measuring δ11Bcalcite and translating this to δ

11B4

(potentially requiring a species specific calibration). δ11B4 is then combined with the fractionation factor (ɛ—
known from Klochko et al. (2006); Nir et al. (2015)), the apparent equilibrium constant for boron in seawater
(pK∗

B—which is estimated from temperature, pressure, and seawater composition (Dickson & Goyet, 1994)), and
the boron isotope ratio of seawater (δ11Bsw). We refer the interested reader to Marschall and Foster (2018) for a
full description of boron systematics in seawater, but for the purposes of this work it is sufficient to say that one of
the key parameters that must be established in order to reconstruct palaeo ocean pH is δ11Bsw. Modern day
seawater has a δ11Bsw of 39.61 ± 0.04 ‰ (Foster et al., 2010) ‐ however δ11Bsw is very likely to have been
different in the past (Lemarchand et al., 2000).

Based on assessments of the relevant input and output fluxes to the ocean, boron is thought to have a relatively
long residence time in seawater of roughly 10million years (Broecker & Peng, 1982)—that is, the average amount
of time an atom of boron spends in the ocean. It is estimated from geochemical box modeling of the boron cycle
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that δ11Bsw might have changed by up to 0.1 ‰/Myr (Lemarchand et al., 2000). This means that beyond a few
million years ago, ocean δ11Bsw might have been appreciably different to modern day seawater, which must be
taken into account when calculating palaeo pH. Unfortunately we currently have no direct archives of δ11Bsw.
Halites show some promise as a direct proxy for δ11Bsw (Paris et al., 2010), but uncertainty remains about the
observed variability in halite δ11B reconstructions, so δ11Bsw is currently calculated using more indirect
techniques.

The primary technique for estimating, or placing limits on, palaeo δ11Bsw is to exploit vertical gradients in the
ocean (Anagnostou et al., 2016; Foster et al., 2012; Greenop et al., 2017; Henehan et al., 2019). This works due to
the sigmoidal relationship between δ11B4 and pH (as shown in Figure 1a). The non‐linearity of this relationship
makes it possible to calculate δ11Bsw given two δ11B4 datapoints and an estimate of the change in pH across this
δ11B4 gradient. The vertical gradient in pH (ΔpH) is correlated to the vertical gradients in carbon isotopes
(Δδ13C), carbon concentration (ΔDIC), and oxygen concentration (Δ[O2], linked with Apparent Oxygen Uti-
lisation—AOU) due to their shared controlling processes (see Figure 2). Vertical gradients in all of these pa-
rameters can therefore be related to δ11Bsw. Paired measurements which allow the vertical gradient in δ11B4 to be
established are currently only available at select times within the Cenozoic—shown below in Table 1.

The simplest option for reconstructing palaeo δ11Bsw from measured δ11B in carbonates is to assume a constant
ΔpH through time equal to modern, an approach used in Raitzsch and Hönisch (2013) (which assumed a ΔpH of
0.3 units). By combining this with the sigmoidal relationship of δ11B4 and pH, it is possible to estimate δ11Bsw (see
Figure 1). To improve upon the assumption of a constant ΔpH through time, one can use foraminiferal Δδ18O and
Δδ13C to guide identification of palaeo depth habitats of particular species, and to place reasonable limits on ΔpH
(Anagnostou et al., 2016; Greenop et al., 2017; Palmer et al., 1998). For δ13C, this works because Δδ13C and ΔpH
are jointly controlled by subsurface remineralization of organic carbon, which releases isotopically light carbon
into the water and causes acidification (decreasing pH)—as illustrated in Figure 2. The rationale for such con-
straints is broadly justified by the difficulty of reversing the sign of the gradients (which would require a
fundamental change in biogeochemical dynamics), demonstrated by exploring a wide swath of model parameter
space (Greenop et al., 2017) in carbon cycle models such as CYCLOPS (Hain et al., 2010), LOSCAR
(Zeebe, 2012), and cGENIE (Ridgwell et al., 2007). That said, it is possible that models may not yet be capable of
representing the full plethora of possible carbonate chemistry states that the ocean can truly inhabit. Despite recent
progress (Caves Rugenstein et al., 2019; Derry, 2022) our understanding of Cenozoic carbon cycle fluxes, and
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Figure 1. The left panel (a) shows a graph of pH versus δ11B4 for three different δ
11Bsw's (indicated by lines and corresponding shaded windows). The y axis here can be

used for both δ11B4 and δ
11Bsw. A hypothetical 2‰ excursion from 22 to 20‰ is depicted by the black dotted lines. The equivalent pH change for the same excursion at

variable δ11Bsw is displayed in the shaded region. Note this curve is symmetrical about the value of pK∗
B (roughly 8.6 for standard modern open ocean conditions). The

right panel (b.) shows (for the same 22–20‰ excursion as shown in the left panel) ΔpH as a function of δ11Bsw (pink line). A hypothetical constraint on ΔpH of 0.2± 0.04
(at 2σ) is shown by the black dashed lines, with uncertainty in the black dotted lines. Where this hypothetical constraint intersects with the pink line gives the region of
possible δ11Bsw's. We illustrate that a Monte Carlo approach, which samples possible ΔpH from the hypothetical constraint to give probability distributions (shown in pink
shaded regions) for δ11Bsw, aligns with the emplaced constraint. Due to the symmetry of the curves shown in the left panel, there are often two δ11Bsw's compatible with a
ΔpH constraint. Typically the lower window is rejected as it would resolve to an unreasonably high pH.

Paleoceanography and Paleoclimatology 10.1029/2023PA004769

WHITEFORD ET AL. 2 of 17

 25724525, 2024, 6, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023PA

004769 by N
H

S E
ducation for Scotland N

E
S, E

dinburgh C
entral O

ffice, W
iley O

nline L
ibrary on [09/07/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



their drivers, remains incomplete, as does our understanding of their relationship to oceanic properties such as
DIC and pH, and by extension the vertical gradients in these ocean properties. There are circumstances which
would result in the “normal” relationships between these parameters breaking down, for instance if organic
carbon is predominantly respired by sulfate reducers (which would alter local alkalinity and pH). While these
complications are rare, it is prudent to keep in mind their potential to impact estimates of δ11Bsw. Despite these
challenges, using model predicted gradients in δ13C and pH with paired planktic‐benthic (or surface‐subsurface)
foraminiferal δ11B data remains attractive, as it requires only stable carbon isotope data (analyses which are
routinely performed), and a model capable of providing estimates of feasible ocean profiles of δ13C) and pH.

δ11Bsw from paired surface‐deep samples can also be refined by estimation of AOU (Anagnostou et al., 2016).
Surface ocean water oxygen saturation is mainly controlled by temperature (which is already a requirement for the
δ11B to pH calculation) and it is assumed based on modern observations that samples from deeper dwelling
planktic foraminifera can not have inhabited anoxic waters (Hull et al., 2011). Similar to pH and δ13C, the vertical
gradient in oxygen concentration is primarily a function of how much remineralization of organic carbon has
occurred (see Figure 2). Remineralization adds CO2 to the water, increasing the DIC concentration. A Redfield
Ratio can be used to convert constraints on ΔO2 to ΔDIC, however the impact on ΔpH is complicated by the
buffering influence of alkalinity (Subhas et al., 2022). The calculation therefore requires that we know (or as-
sume) a second carbonate system parameter (in addition to pH) to make ΔDIC calculable. This is not a major
imposition, as quantification of palaeo CO2 from boron isotope derived pH already requires assumption or
knowledge of a second carbonate system parameter. Such an estimate may itself be derived from the same type of
carbon cycle models used to estimate Δδ13C and ΔpH. Carbon cycle models have been used to provide an es-
timate of saturation state for specific sites or times in the past, or to provide estimates of alkalinity (Anagnostou
et al., 2016; Henehan et al., 2019), which simultaneously informs δ11Bsw and palaeo CO2 reconstructed from
boron isotope derived pH.

Overall, it is therefore necessary to balance a number of requirements when reconstructing δ11Bsw. The estab-
lished δ11Bsw must produce a reasonable: ΔpH, Δδ13C, saturation state and AOU. Finding the space in which all
these parameters are viable allows quantification of δ11Bsw with attendant uncertainty. The boron isotope proxy is
fortunate however, in that almost all data and assumptions required to estimate δ11Bsw are already a part of the
δ11B4 to CO2 calculation.

Figure 2. Schematic of the processes which cause vertical gradients in oceanic properties as harnessed in reconstructions of
δ11Bsw. Oxygen and carbon dioxide concentrations are set in surface waters by their atmospheric concentrations and Henry's
Law (which is temperature dependent). Surface ocean carbon is taken up by biomass to form organic tissues, which are
preferentially enriched in the lighter carbon isotope. When that biomass is exported to depth and remineralized, organic carbon
is oxidized (consuming oxygen) and releasing CO2, which drives acidification. These processes cause correlated gradients in
pH, aqueous CO2, aqueous O2, saturation state, and δ13C. As δ11Bsw is a well mixed signal, differences in δ11B4 between the
surface and subsurface are primarily driven by the gradient in pH. δ11Bsw is homogenous throughout the water column due to
the long 10 Myr residence time of boron (Foster et al., 2010; Lemarchand et al., 2000).
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Most previous applications of the techniques described above have focused on individual time slices of the
Cenozoic (as described in Section 2 and Table 1). By combining each of these individual studies, we are able to
reach a critical mass of information, allowing us to produce an estimate for how δ11Bsw evolved throughout the
Cenozoic. Our study represents an advance compared to two particularly relevant previous works that provided
Cenozoic timescale estimates of δ11Bsw. Raitzsch and Hönisch (2013) predicted Cenozoic δ11Bsw by assuming a
constant ΔpH and a linear trend in deep ocean pH, meaning reconstructions of pH using this δ11Bsw are only able
to reconstruct the initial assumption (J.W. B. Rae, 2018) (further impacts of which are discussed in Section 5.3). J.
W. Rae et al. (2021) compiled and reanalyzed marine palaeo CO2 proxy data (including boron isotopes), and
therefore required a curve for δ11Bsw. However, generation of a Cenozoic δ

11Bsw curve was not the primary focus
of that study and the authors noted the need to improve interpolation and constrain uncertainty. Here we provide a
more robust estimate of the evolution of δ11Bsw through time by bringing existing and updated δ11Bsw constraints
together into a rigorous statistical framework called a Gaussian Process.

The Gaussian Process is a flexible Bayesian non‐parametric regression technique. We provide further details in
the methods, a schematic illustration in Figure 3, and a full description in Supporting Information S1. Intuitively,
we can consider the Gaussian Process as a method for creating stochastic smooth curves influenced to go through

Table 1
Table of Data Constraints With Representative Central Values and 95% Confidence Intervals as an Indicator of Uncertainty

Age (Myr) Central estimate (‰) 95% interval (‰) Uncertainty structure Source

0.0 39.61 0.04 Gaussian Foster et al. (2010)

0.68 39.69 4.28 Non‐Gaussian Greenop et al. (2017)

1.14 38.55 3.74 Non‐Gaussian Greenop et al. (2017)

1.16 41.60 3.27 Non‐Gaussian Greenop et al. (2017)

1.45 40.51 2.00 Non‐Gaussian Greenop et al. (2017)

2.27 41.57 1.66 Non‐Gaussian Greenop et al. (2017)

2.87 39.82 2.05 Non‐Gaussian Greenop et al. (2017)

5.37 40.38 2.78 Non‐Gaussian Greenop et al. (2017)

8.67 42.30 1.88 Non‐Gaussian Greenop et al. (2017)

9.33 40.22 2.28 Non‐Gaussian Greenop et al. (2017)

10.14 36.35 5.98 Non‐Gaussian Greenop et al. (2017)

11.62 40.34 2.05 Non‐Gaussian Greenop et al. (2017)

12.27 35.69 5.99 Non‐Gaussian Greenop et al. (2017)

12.80 37.47 2.53 Non‐Gaussian Greenop et al. (2017)

13.53 36.43 5.89 Non‐Gaussian Greenop et al. (2017)

16.39 36.49 5.76 Non‐Gaussian Greenop et al. (2017)

17.69 37.00 5.66 Non‐Gaussian Greenop et al. (2017)

19.00 41.10 1.95 Non‐Gaussian Greenop et al. (2017)

19.67 40.44 1.93 Non‐Gaussian Greenop et al. (2017)

22.62 39.41 4.47 Non‐Gaussian Greenop et al. (2017)

22.98 34.65 6.10 Non‐Gaussian Greenop et al. (2017)

23.08 39.11 3.50 Non‐Gaussian Greenop et al. (2017)

37.00 37.63 2.36 Non‐Gaussian Anagnostou et al. (2016)*

44.40 38.51 0.75 Non‐Gaussian Anagnostou et al. (2016)*

45.60 37.81 1.18 Non‐Gaussian Anagnostou et al. (2016)*

53.00 38.49 0.70 Non‐Gaussian Anagnostou et al. (2016)*

55.80 38.94 0.41 Gaussian Gutjahr et al. (2017)

66.04 39.30 0.50 Uniform Henehan et al. (2019)*

Note. * symbol indicates the values has been updated from the original publication for this work.
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datapoints. For δ11Bsw, we provide data constraints and prescribe the smoothness based on mechanistic modeling,
which allows us to can draw many potential evolutions of δ11Bsw. We are able to impose additional constraints
(such as on the rate of change) by filtering the potential evolutions of δ11Bsw to find those which are compatible
with all available information—thus providing an improved estimate of δ11Bsw. The realizations can be sum-
marized to provide an estimate of δ11Bsw at any specific time or used as inputs to other models as a method for
propagating uncertainty in δ11Bsw.

2. Data
To create our curves, we combine observational data regarding levels of δ11Bsw at specific time points from a
range of previous studies. These observational estimates come with various forms of uncertainty, primarily due to
how the raw (direct) measurements were processed/transformed into values for δ11Bsw. Some of these previous
studies report observed values that relate to central estimates of the underlying δ11Bsw at the specific time of the
sample (Gutjahr et al., 2017; Henehan et al., 2019, 2020). Others provide lower‐ and upper‐bounds for the
possible value of δ11Bsw (Anagnostou et al., 2016). A further study provides complete probability distributions for
possible values of δ11Bsw given their observational constraints (Greenop et al., 2017).

Two of those studies reconstructed δ11Bsw for a particular event (or short timeslice) (Gutjahr et al., 2017; Henehan
et al., 2019), and two reconstructed δ11Bsw over a wider time window, within which δ11Bsw might have evolved
(Anagnostou et al., 2016; Greenop et al., 2017). Data constraints on δ11Bsw are varied. Some previous works
presented central constraints of δ11Bsw (Gutjahr et al., 2017; Henehan et al., 2019, 2020), while another provided
lower or upper limits on δ11Bsw (Anagnostou et al., 2016), and another provided full probability distributions for
possible values of δ11Bsw (Greenop et al., 2017). Two of those studies reconstructed δ11Bsw for a particular event
(or short timeslice) (Gutjahr et al., 2017; Henehan et al., 2019), and two reconstructed δ11Bsw over a wider time
window, within which δ11Bsw might have evolved (Anagnostou et al., 2016; Greenop et al., 2017).

Figure 3. An illustrative example of the Gaussian Process approach applied to reconstruct a hypothetical time series (shown
in black). Each subplot shows the mean reconstruction (colored line), 95% confidence interval (colored window), and three
random Gaussian Process samples (gray lines). Panel (a) shows a Gaussian Process prior with set mean, kernel function, and
hyperparameters but without any data constraints. Panel (b) shows a Gaussian Process posterior with the same prescribed
mean and hyperparameters as panel a., but with three noisy data constraints (shown with 2σ uncertainties in blue). Panel
(c) shows the same Gaussian Process posterior as panel (b), where, in addition to the three noisy data constraints, we have
applied additional constraints on the acceptable rate of change of the value through time.
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Table 1 contains the compilation of datapoints used to create our estimate of δ11Bsw using a Gaussian Process.
Some of these data are as originally published, and others have been updated and refined. We use the δ11Bsw

values from Greenop et al. (2017) exactly as reported in the original study. The original published estimate from
Henehan et al. (2019), however, is based on carbonate system calculations whose equilibrium constants use fitting
parameters from the supplementary tables of Hain et al. (2015). These tables have since been found to contain
inaccuracies (CenCO2PIP Consortium, 2023), and so here we updated carbonate system calculations, and hence
δ11Bsw constraints, based on corrected equilibrium constants packaged with Raitzsch et al. (2022). Updated
carbonate system calculations and CO2 estimates for this time are provided in Supporting Information S1, and are
plotted in Henehan and Witts (2023). Datapoints from Anagnostou et al. (2016) are updated by modifying the
calculation of vital effects to account for changing seawater chemistry. With these recalculations, Henehan
et al. (2019)'s estimate of δ11Bsw is updated from the originally published value of 39.05–39.85‰ to 39.05–39.55
‰. Finally, estimates from Anagnostou et al. (2016) are integrated as full probability distributions instead of the
lower/upper limits that were presented in the original study (see Table 1 and Data Set S1 in Supporting
Information S2).

To supplement these existing δ11Bsw constraints, we take planktic δ11B4 data as presented in J. W. Rae
et al. (2021), and shown in Figure 4, based on original studies by Anagnostou et al. (2016); Anagnostou
et al. (2020); Badger et al. (2013); Chalk et al. (2017); de la Vega et al. (2020); Dyez et al. (2018); Foster (2008);
Foster et al. (2012); Greenop et al. (2014, 2017, 2019); Gutjahr et al. (2017); Harper et al. (2020); Henehan
et al. (2019, 2020); Hönisch et al. (2009); Martínez‐Botí et al. (2015); Pearson et al. (2009); Penman et al. (2014);
Sosdian et al. (2018), to calculate a range of valid δ11Bsw by exploiting the sigmoidal shape of the relationship
between pH and δ11B4 (as seen in Figure 1). The maximum offset between δ11B4 and δ

11Bsw is seen at low pH, and
is described by the fractionation factor ɛ (or α). For any given estimate of δ11B4, the minimum valid δ11Bsw is
equal to δ11B4, and the maximum δ11Bsw can be calculated by combination with the fractionation factor. The
nature of the relationship between δ11B4 and δ

11Bsw is examined in Figure 1a. For any given δ11B4, in order to sit

Figure 4. Our reconstruction of δ11Bsw is shown in pink, with a central line depicting the median, and a window representing
the 95% confidence interval. Central data constraints are shown by vertical pink bars representative of 95% confidence
intervals, and upper limits (obtained based upon the planktic δ11B4 measurements) are shown by horizontal pink bars. The
gray line depicts δ11Bsw reconstructed by J.W. Rae et al. (2021) for comparison. δ11B4 datapoints from J.W. Rae et al. (2021)
are shown as purple dots (interpolated in the purple shaded region using a Gaussian Process), which are converted to pH
using our δ11Bsw (red points, line, and shaded region) and the δ11Bsw from J. W. Rae et al. (2021) (gray points and line) for
comparison. We note that our Gaussian Process interpolation of δ11B4 (and therefore also pH) has difficulty during large data
gaps. In particular during the Palaeogene (which we have faded out), the large data gap is bounded by events with rapid
changes in δ11B4, and our reconstruction would be tempered by filling in this region with δ11B4 data.
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somewhere on the sigmoidal curve, δ11Bsw must be equal to or greater than δ11B4, but no more than δ11B4 and the
fractionation factor (the height of the sigmoid shape—strictly given by δ11Bsw = δ11B4 × α + ɛ). To create these
additional constraints, we first bin the plantkic δ11B4 data into 1 Myr intervals, then take the maximum measured
δ11B4 as the lower limit for δ11Bsw, and use the minimum measured δ11B4 to calculate the maximum δ11Bsw.
Uncertainty in measured δ11Bforam is propagated to uncertainty in the possible δ11Bsw, and the upper 99% quantile
is used to estimate the maximum permissible δ11Bsw. As described, lower limits can be calculated using this
method, however these values are so low as to be uninformative across the Cenozoic. Upper limits created using
this method are shown in Figure 4 (the horizontal pink bars).

In this work, we therefore have four potential categories of constraint: constraints where the uncertainty is well
represented by a Gaussian distribution (Gaussian constraints), constraints where the uncertainty is not well
represented by a Gaussian distribution (non Gaussian constraints), lower and upper limits, and limitations on the
rate of change in δ11Bsw from modeling.

3. Methods
Having assembled the data described in Section 2, we reconstruct δ11Bsw using a Gaussian Process (GP). The
Gaussian Process is a statistical technique that allows us to generate smooth time series conditioned to match data
constraints (see Figure 3, or for a fuller, more rigorous description of a Gaussian Process—see Supporting In-
formation S1). In the case of δ11Bsw, we have an expectation of smoothness from the modeling work of
Lemarchand et al. (2000), which we combine with data constraints as described in Section 2 and shown in
Figure 4. A Gaussian Process works by using a kernel function, which encodes structure into the reconstruction,
and hyperparameters which tune the behavior. Here we use the squared exponential kernel (also known as the
Radial Basis Function), which expresses that nearby points are more likely to be similar to each other than distant
points. There are two controlling hyperparameters—one expresses the length scale over which there is significant
covariance, which is related to the expected rate of change in a signal. The other parameter is the noise scale—
which manifests as how much uncertainty is expected at times where no data constraints are available. The
Gaussian Process can be used to generate random smooth lines with the prescribed characteristics even in the
absence of data constraints (Figure 3a.), however data can be incorporated by adapting the covariance structure
such that the statistical samples it generates will go through datapoints where permitted by the chosen hyper-
parameters (Figure 3b.). Uncertainty in data constraints can be incorporated directly into the Gaussian Process if
uncertainty in the estimates is Gaussian in nature, and other types of constraint can be incorporated by adapting
the approach.

The Gaussian Process is able to provide a number of equally likely, independent, stochastic time series, which are
useful in reconstructing time series of palaeo data with an estimate of the uncertainty. Each obeys the smoothness
constraint encapsulated by the kernel, while simultaneously attempting to match any available data. The result is
that where a data constraint with low uncertainty is available, time series will be strongly influenced to go through
this datapoint. Where data are sparse, or data constraints are uncertain, statistical replicates diverge to represent
increasing uncertainty (see Figure 3b or Supporting Information S1 for a demonstration of this behavior). Because
each sample drawn from the Gaussian process is independent and equally likely, we can straightforwardly apply
filters to reject any sample that has undesirable properties (Figure 3c). As mentioned above, data constraints
where uncertainties can be well represented by a Gaussian distribution can be directly assimilated into the
Gaussian Process. Here we also wish to enforce three other types of constraint, lower/upper limitations on δ11Bsw,
limitations on the rate of change in δ11Bsw, and data constraints with a non Gaussian uncertainty structure.
Limitations (either on the value of δ11Bsw or the rate of change in δ11Bsw) are relatively straightforward to enforce
—we can compare each Gaussian Process sample to the limitation and simply reject those which are outside the
established limits. Non‐Gaussian constraints are slightly more difficult to integrate, but can also be done within a
rejection framework by approximating each non‐Gaussian constraint with a Gaussian distribution. Here we do
this by creating Gaussian constraints with the same mean as their non‐Gaussian counterpart, but with higher
standard deviation. Samples can be then be strategically rejected to tweak the Gaussian Process such that it has
effectively sampled from non‐Gaussian constraints (the mechanics of this type of rejection sampling are clarified
in Supporting Information S1).

One difficulty of rejection sampling, however, is dealing with simultaneous but mutually exclusive data con-
straints. Gaussian distributions are nonzero across their domain, meaning no value (however unlikely) is truly
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impossible. The nature of the non‐Gaussian constraints in this work though, suggests that at any given time some
δ11Bsw values are impossible to reconcile with the data estimates. Given multiple constraints of this type, in close
proximity to one another, it becomes exceedingly unlikely to draw samples from the Gaussian Process which have
the requisite smoothness and pass through the possible region of every datapoint. We overcome this difficulty by
giving each non‐Gaussian constraint the possibility of being an outlier value. In summary, Gaussian Process
samples are not always rejected completely where in disagreement with data, but the probability of acceptance is
highest where in agreement with the data constraints, and lower (but non zero) further from the data constraints.

We reconstruct δ11Bsw by conditioning a Gaussian Process on the few available central estimates of δ11Bsw

(shown in Table 1). Additional data constraints are integrated by filtering the generated statistical samples using
rejection sampling (as described above and in Supporting Information S1). Any curves which fall outside the
lower or upper limits are rejected, and some curves are rejected to adjust the Gaussian Process posterior such that
it appropriately incorporates non Gaussian constraints. We use hyperparameters of 2 ‰ noise scale, and 10 Myr
length scale. The Gaussian Process methodology does not enforce a specific rate of change, but the chosen noise
scale and length scale enable an approximation of the rate of change, in this case roughly equivalent to a 0.2
‰/Myr rate of change. This is on the faster end of agreement with the residence time andmaximum rate of change
from box modeling of the geochemical cycle of boron (Lemarchand et al., 2000). Lemarchand et al. (2000)
suggest an upper limit to the rate of change of δ11Bsw of 0.1‰/Myr. This estimate is based on modern day fluxes,
so we allow greater uncertainty in the past when the boron fluxes in and out of the ocean may have been different,
increasing the permissible maximum rate of change linearly to 0.7 ‰/Myr at 70 Ma (discussed further in Sec-
tion 5.2). Output samples are filtered such that those with a rate of change greater than the values described above
are rejected. This, alongside the rejection strategy used to integrate non‐Gaussian constraints, leaves a subset of
the originally generated samples. Approximately 10 in each 10,000 are accepted, and we run the algorithm until
10,000 samples have been accepted.

4. Results
Our reconstruction of δ11Bsw suggests rather muted change across the Cenozoic relative to the change in δ11B4.
δ11B4 has changed by roughly 8‰, and we find that δ11Bsw has been responsible for perhaps 2‰ of that change,
leaving a 6 ‰ change driven predominantly by pH. The pattern of change in δ11Bsw is non‐linear, with a decline
of roughly 1 ‰ from the early to mid Cenozoic, followed by an increase of approximately 1.5 ‰ from 30 Ma to
10 Ma, and a relatively stable value between those time periods and from 10 Ma until the present day. At times
there is large uncertainty in the absolute value of δ11Bsw, in particular around 30 Ma, however the relative change
in δ11Bsw is more certain and the rise in δ11Bsw between 40 and 10 Ma—also illustrated in Figure 4—appears
robust. Our reconstruction generally matches the evolution curve used by J. W. Rae et al. (2021), except in the
interval between 20 Ma and 10 Ma. Within this interval both curves are guided predominantly by the data from
Greenop et al. (2017), but J. W. Rae et al. (2021) used Greenop et al. (2017)'s binned values whereas our approach
uses the probability distribution of each individual estimate. Our Gaussian Process methodology favors the higher
δ11B values in this interval due to their lower reported uncertainty (relative to the lower δ11Bsw estimates from
Greenop et al. (2017)). This results in an overall higher estimate of δ11Bsw during the Miocene, and implies pH
was potentially lower than previously calculated at this time. However, we note the uncertainties in both our
reconstruction and the individual δ11Bsw constraints are high in the Neogene, and that some of the data constraints
suggest rates of change in δ11Bsw exceeding those compatible with geochemical box model predictions (as
discussed further in Section 5.2). Uncertainty on δ11Bsw is also particularly high in data gaps where δ11B4 has yet
to be measured. In particular we note a large window during the Oligocene within which no boron isotope data has
yet been published, and which correspondingly has high uncertainty in δ11Bsw.

We provide illustrative curves for δ11B4 and pH (see Figure 4) by using a Gaussian Process to interpolate δ11B4,
then combining this with our predicted δ11Bsw and other ancillary parameters as in J. W. Rae et al. (2021). The
Gaussian Process used to reconstruct δ11B4 uses a length scale of 2 Myr to target relatively long term changes in
pH, rather than individual paleoclimatic events.

The pattern of change we find in δ11Bsw is broadly similar to temporal trends in a number of other related
biogeochemical signals, such as oceanic 87/86Sr, 187/188Os, and δ7Li. Here we take published 87/86Sr and δ7Li from
Misra and Froelich (2012), and compile a new record of 187/188Os from Josso et al. (2019); Klemm et al. (2005);
Oxburgh (1998); Oxburgh et al. (2007); Paquay et al. (2008, 2014); Pegram and Turekian (1999); Peucker‐
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Ehrenbrink and Ravizza (2000); van der Ploeg et al. (2018); Ravizza (1993); Ravizza and Turekian (1992);
Ravizza and Peucker‐Ehrenbrink (2003b, 2003a); Reusch et al. (1998); Robinson et al. (2009). For each signal,
we assume that data constraints have Gaussian uncertainty (with magnitude given with original estimates, except
in the case of 87/86Sr where an illustrative uncertainty is used), which allows us to perform a straightforward
Gaussian Process reconstruction, with the residence time of each element informing the length scale used
(87/86Sr—5.1Myr (Broecker & Peng, 1982), δ7Li—2.8 Myr (Stoffynegli &Mackenzie, 1984), 187/188Os ‐ 1 Myr).
Interpolated data products for both 87/86Sr and δ7Li have been previously published (for instance in Misra and
Froelich (2012)), but to our knowledge this is the first interpolated data product available for 187/188Os (though an
interpolation is shown in Torres et al. (2014). There remains uncertainty in the residence time of osmium, but it is
thought to be extremely short relative to the other signals shown here (all estimates are <100kyr—see e.g.
Oxburgh (2001)). We use a length scale of 1 Myr in the reconstruction to balance the available data density
against the short residence time. Overall, our reconstructions use a more sophisticated fitting strategy than
previous incarnations, which is guided primarily by the data and integrates information on residence time of each
element. This allows us to provide a robust quantification of the uncertainty in each signal, within the limitations
of currently available data density.

Each of the seawater isotope signals we examine, like δ11Bsw, shows a long term increase over the Cenozoic.
Oceanic strontium isotopes appear to show most similarity with our reconstructed δ11Bsw, while we note
resemblance between the evolutions of pH, lithium isotopes, and osmium isotopes (as shown in Figure 5). We are
able to provide an extremely narrow uncertainty window on our 87/86Sr reconstruction due to strontium's long
residence time and relatively high data density (and data quality) over the Cenozoic. By contrast, 187/188Os which
has greater data density and comparable scale of uncertainty in datapoints, has more uncertainty in our recon-
struction. This is due to osmium's extremely short residence time, and persists despite us using an artificially long
length scale to reconstruct this signal. δ7Li by contrast has quite large uncertainties, due in large part to the
uncertainty in the individual data constraints. We are unable to reconstruct the rapid shift in δ7Li at the K‐Pg
boundary, which occurs faster than the modern day residence time of lithium (see Section 5.2 for further dis-
cussion). Despite these challenges we believe reconstruction of these signals benefits from the Gaussian Process
approach, in that uncertainties on our reconstruction are more representative, and the timescale of change in each
signal aligns more closely to our expectations based on their residence times.

5. Discussion
5.1. Decomposition of δ11B4

δ11B4 is an integrated signal, combining the effects of δ11Bsw, pH, pK∗
B, and ɛ. Of these, only a few are time‐

variable: δ11Bsw, pH, and some of the factors which influence pK∗
B—in particular temperature, and seawater

elemental composition. The sensitivity of δ11B4 to these factors (illustrated in Figure S2 in Supporting Infor-
mation S1) is such that only changes in δ11Bsw or pH would be of sufficient magnitude to drive the observed 8‰
change in δ11B4 across the Cenozoic. Temperature may also have driven some portion of the change, though
estimating how much is complicated because individual sample sites may deviate significantly from global
average temperature. All other factors being equal, a temperature change of+10°C drives approximately − 1.5‰
change in δ11B4. Temperature change is taken into account in all calculations presented here,. and if we adjust for
any secular evolution of temperature we might therefore simplify the δ11B4 record into two components, δ11Bsw

and pH. Any change in δ11B4 not explained by changes in δ
11Bsw must be the result of pH, and vice versa. Given

the observed 8 ‰ change in δ11B4, our reconstructed 2 ‰ change in δ11Bsw, and temperature change across the
Cenozoic of approximately 12°C driving approximately 1.8‰ of change, this suggests roughly 4 ‰ of change
has been driven by changing pH. That is roughly equivalent to an increase in pH of 0.4 units across the Cenozoic,
or a decrease in hydrogen ion availability by 60%. By comparison, anthropogenic CO2 release has driven a surface
ocean pH change of roughly 0.15 units, equivalent to a 41% increase in hydrogen ion availability (Findlay
et al., 2022) relative to preindustrial conditions. Relative to their respective initial conditions, the anthropogenic
surface ocean [H+] perturbation is therefore approximately two thirds the magnitude of long term change seen
within the last 65 million years.
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5.2. δ11Bsw Rate of Change

A key feature of the Gaussian Process methodology used here is the ability to draw smooth potential evolutions of
δ11Bsw, which we augment by filtering samples to reject those with an unfeasibly high temporal gradient. The
feasibility of the rate of change in δ11Bsw (and the hyperparameters which tune the Gaussian Process smoothness)
are primarily based on the geochemical boxmodeling work of Lemarchand et al. (2000). Lemarchand et al. (2000)
suggest that the likely maximum rate of change in δ11Bsw is 0.1 ‰/Myr. We acknowledge that this is based on
modern fluxes—fluxes which are not exceptionally well constrained (Park & Schlesinger, 2002)—so (as
described in Section 3) we allow increasing maximum rates of change further back into the past ‐ up to 0.7‰/Myr
at 70 Ma.We choose the value of 0.7‰/Myr at 70Ma because it allows us to enforce a rate limit near 0.1‰/Myr
when we are most sure of that value (close to modern), without enforcing a strong limit earlier in the Cenozoic
when we are much less certain about the residence time of boron and potential rate of change in δ11Bsw. 0.7
‰/Myr is large enough that it does not result in rejection of potential evolutions in the earlier half of the Cenozoic
(see Figure S3 in Supporting Information S1), meaning the influence of the rate of change limit is mostly con-
strained to the rejection of samples as a result of their temporal gradient during the Neogene.

Suggestions of a higher rate of change in δ11Bsw than previously recognized are present in the data set of Greenop
et al. (2017). The surface‐deep δ11B4 pairs of Greenop et al. (2017) (as described in Section 2) appear to record a

Figure 5. Our reconstruction of δ11Bsw is shown pink, with a thick central line depicting the median, and a window
representing the 95% confidence interval. Thinner pink lines give a sense of the covariance structure in our posterior estimate
of the δ11Bsw. Data constraints are shown by the pink dots (here displayed without uncertainty for clearer comparison of
signal trends). Other related geochemical signals δ7Li, 87/86Sr, and 187/188Os are shown in yellow, green, and blue
respectively after Misra and Froelich (2012). Data constraining 87/86Sr and δ7Li is sourced from Misra and Froelich (2012),
while data constraining 187/188Os is compiled from a number of sources (listed in the main text). We interpolate each of these
signals with a Gaussian Process with hyperparameters guided by the residence time of each signal.
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bimodal distribution, with some indicating δ11Bsw similar to modern, and others (mostly in the middle Miocene
climatic optimum) suggesting δ11Bsw roughly 2 ‰ lower. These would appear to suggest oscillations in δ11Bsw

more rapid than would be consistent with a rate of change of 0.1‰/Myr. We find that in order to match these data
constraints, our Gaussian Process would need to have a length scale of approximately 3 Myr (which is very close
to Park and Schlesinger (2002)'s estimate of the residence time of boron at 3.3 Myr). Our understanding of the
primary difference between the estimate of Park and Schlesinger (2002) and Lemarchand et al. (2000)'s is that is
driven by different estimate of the atmospheric fluxes of boron, which are particularly difficult to constrain. We
draw evolutions consistent with the rate of change suggested by Lemarchand et al. (2000), which is the current
paradigm for palaeo pH estimation from boron isotopes—however we note the possibility for future changes in
our understanding of the rate at which δ11Bsw may have changed. Our method requires that we give each non‐
Gaussian constraint (shown in Table 1) the possibility of being an outlier. The Gaussian Process then forges a
path roughly through the center of these constraints, drawn slightly high by the purportedly lower uncertainties in
the higher δ11Bsw estimates.

In summary, we proceed here under the existing paradigm of a long residence time for boron in seawater, and a
slow rate of change in δ11Bsw. However, we acknowledge the possibility that the rate of change in δ

11Bsw is faster
than currently appreciated, and look to further modeling efforts and an improved understanding of the boron cycle
to guide future interpretation of the data collated here. Faster rates of change may be explored with the algorithm
presented here, but this increases the requirement for higher resolution data constraining δ11Bsw. Indeed our work
underscores the value of, and need for more, data‐derived δ11Bsw constraints outside of individual paleoclimatic
events.

5.3. Comparison to 87/86Sr, 187/188Os, and δ7Lisw

Figure 5 shows that there is a broad scale similarity between the temporal evolution of δ11B, δ7Li, 87/86Sr and
187/188Os. In particular though, we observe greater similarity between δ11Bsw and 87/86Sr, and also between pH,
δ7Li and 187/188Os. The similarity between 87/86Sr and δ11Bsw is present in the overall shape of both signals, and in
both showing an inflection point at approximately the same time, around 35 Ma. Given 87/86Sr and δ11Bsw share
many controls (such as weathering and hydrothermal influx), it is not surprising that their signals share some
similarities. However we note that 87/86Sr has been increasing continuously since 40 Ma, while our reconstruction
of δ11Bsw begins to decline at approximately 10 Ma.

We note an striking correspondence between δ11B4 and δ
7Li (shown in Figures 4 and 5, or together in Figure S1 in

Supporting Information S1), in agreement with previous findings (Greenop et al., 2017; Raitzsch & Hön-
isch, 2013) as well as similarity between δ11B4 and 187/188Os. Previously the correspondence between δ11B4 and
δ7Li has been attributed to the overlap in drivers of δ11Bsw and δ7Li. Under the two component model described in
Section 5.1, we propose that similarity of δ11B4 and δ

7Li could either be due to a relationship between δ7Li and
δ11Bsw (as previously suggested by Raitzsch and Hönisch (2013)), or due to a relationship between δ7Li and pH,
or a combination of both. δ11Bsw and δ7Li share drivers, as do pH and δ7Li, which are linked to weathering, clay
formation, and seafloor spreading. These confounding factors make it difficult to ascribe this correlation to either
the δ11Bsw or pH signals unambiguously (see Figure S1 in Supporting Information S1). If pH is prescribed to
change slowly and linearly (as in Raitzsch and Hönisch (2013)), then, by necessity, δ11Bsw will reflect δ11B4—
requiring relatively rapid fluctuations in δ11Bsw. However, as discussed in Section 5.2, we proceed here under the
assumption that the rate of change in δ11Bsw is as calculated in Lemarchand et al. (2000), removing the possibility
of fast changes in δ11Bsw, and necessitating that δ11B4 and pH are tightly correlated. Therefore here, it is pH and
δ7Li which have similar trajectories across the Cenozoic.

Notwithstanding the broad scale correlation between δ7Li and δ11B4, we note an interesting divergence between
these signals at the K‐Pg boundary. At this time, there is a large excursion in δ7Li of approximately 5 ‰ in scale
(almost as large as all the change which occurs during the rest of the Cenozoic). This excursion occurs at the same
time as a large excursion in 187/188Os. While there is also a large perturbation in foraminiferal boron isotopes at
approximately this time (Henehan et al., 2019), the temporal agreement is poor, and the nature of the two signals is
different. δ11B4 undergoes an excursion but rapidly recovers to near pre‐perturbation levels, whereas δ

7Li values
stay low for the next∼15 million years. This indicates that the drivers of pH and δ7Li can be decoupled. However,
the recorded change in δ7Li at the K‐Pg is extremely rapid, faster even than the modern residence time of lithium
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in seawater (approximately 1.2 Myr (Misra & Froelich, 2012)). It seems equally plausible that there is alternative,
non‐seawater, driver of foraminiferal δ7Li at this time. If this alternative control is linked to the carbonate system
(as suggested by Vigier et al. (2015); Roberts et al. (2018)), similar effects could conceivably be influencing the
correlation between δ11B4 and δ

7Li more broadly during the Cenozoic. At present, however, studies disagree as to
the nature of carbonate system control on foraminiferal δ7Li (Roberts et al., 2018; Vigier et al., 2015).

5.4. Palaeo pH and CO2

pH is linked to the ocean carbonate system, with a particularly close relationship to atmospheric CO2 concen-
trations (Hain et al., 2018). The maximum offset between central estimates of the long term trajectory of the
Cenozoic pH reconstruction of J. W. Rae et al. (2021) and our pH (shown in Figure 4) occurs during the Miocene
(at approximately 12 Ma) and is 0.15 units in scale. All other factors being equal, a fall in pH of 0.15 units would
suggest an increase in atmospheric CO2 concentration of roughly 50%. Naïvely scaling Miocene CO2 estimates
from J. W. Rae et al. (2021) results in CO2 concentrations of approximately 750 ppm after the Miocene Climatic
Optimum (MCO). During the MCO, the offset between our predicted pH and previous work is slightly smaller,
which would suggest (again, assuming all other factors are equal) an increase in atmospheric CO2 of 45% relative
to J. W. Rae et al. (2021) ‐ suggesting an MCO CO2 of approximately 860ppm. These suggestions of increased
CO2 relative to previous work come with the important caveat that, as mentioned above, the constraints on δ11Bsw

in this interval are highly variable, perhaps suggesting additional complicating factors which make δ11Bsw

difficult to estimate at this time. We note that some recent paleotemperature and modeling studies (e.g., Stein-
thorsdottir et al. (2021) and Herbert et al. (2022)) have made the suggestion that Miocene CO2 might be higher
than estimated in earlier reconstructions, with Burls et al. (2021) finding aspects of improved model‐data
agreement at CO2 of around 850 ppm. Our reconstruction of δ11Bsw (and consequently pH) has high overall
uncertainties during the Neogene to reflect this. We encourage future work to provide additional constraints in this
interval and across the Cenozoic.

Second, uncertainties remain in estimates of the second carbonate system parameter in the Miocene and
throughout the Cenozoic. The difference in estimated CO2 from this work and J. W. Rae et al. (2021) may be
partially or wholly ameliorated by changing our expectations of the second carbonate system parameter. In this
case, the suggested higher atmospheric CO2 could be averted by a reduction in DIC relative to previous estimates
—or the reality could lie somewhere in between, with atmospheric CO2 concentration mildly elevated compared
to previous reconstructions, and DIC mildly lowered. Understanding of possible ocean DIC at this time is mostly
derived from carbon cycle box models, supplemented by suggestions from the B/Ca proxy (Sosdian et al., 2018).
The range in DIC estimates is from roughly 1,200 to 2500 μmol/kg, meaning we are unable to disambiguate
whether this record is truly indicative of higher CO2 concentrations at this time, or lower DIC concentrations, or a
combination of both.

6. Benefits of the Gaussian Process Approach
The Gaussian Process methodology allows us to integrate data constraints with limitations on the rate of change in
δ11Bsw from modeling, and (as described in Section 3) by tweaking the standard approach we are able to
incorporate constraints with non‐Gaussian uncertainty structures. Uncertainty in the reconstruction itself behaves
intuitively, such that the spread in the reconstruction is guided by uncertainties in the data where available, and
grows larger with increasing separation from data constraints. The shape of the reconstruction is not specified a
priori, as would be the case with parametric fits. Instead, the reconstruction can take on almost any shape as
guided by the data constraints and chosen hyperparameters, allowing us to model arbitrary shapes in the evolution
of δ11Bsw—and the other isotope systems reconstructed here (Figure 5).

While the standard approach to fitting a Gaussian process (constrained by data with Gaussian uncertainties) can
directly predict the mean and variance of the signal being reconstructed, our approach is reliant on drawing
samples from the Gaussian Process and then filtering them to adjust the posterior prediction. Once this process is
complete we have 10,000 possible time series which are plausible evolutions in δ11Bsw over the last 65 Myr. The
10,000 possible evolutions can be summarized by their mean, median, and/or 95% confidence interval, but
retaining each of the possibilities makes it possible to propagate uncertainties into future data products. For
instance, uncertainty in palaeo pH can be propagated by using a Monte Carlo approach whereby each of these
evolutions is sampled alongside other required parameters to provide 10,000 possible evolutions of pH. Keeping
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each possible evolution maintains the embedded covariance structure, meaning that it is possible to calculate
derivative properties (such as the change in δ11Bsw or pH between one time and another), which would not be
possible to do from metrics such as the mean and standard deviation. This is particularly beneficial in the context
of reconstructing the palaeo carbonate system, as trends in parameters are often more robust or important than
their absolute value. For instance, for short time windows (relative to the residence time of boron), although we
may not know the absolute value of δ11Bsw, we believe that it can not have changed substantially. Combining the
δ11Bsw statistical samples generated here with a Monte Carlo approach allows uncertainty to be propagated in
such a way as to explore the full range of absolute values for δ11Bsw while each sample preserves a reasonable
Δδ11Bsw (see Tierney et al. (2022) for an example of how an analogous approach was used to constrain change in
atmospheric CO2 concentration). As the 10,000 possible evolutions of δ11Bsw that we provide are considered
equally likely, it also allows further filtering. For instance if looking at a particular time period, or when new
information comes to light, which means we are able to be more certain about the rate of change in δ11Bsw, then
the samples provided here can be refiltered to enforce the more restrictive condition—though naturally this will
result in a decreased number of valid samples and weakened statistical power.

In summary, we believe the Gaussian Process approach provides benefits both in being able to provide a holistic
representation of our understanding of δ11Bsw from data and modeling, and also in terms of producing results
which facilitate more sophisticated forms of onward uncertainty propagation.

7. Limitations
The Gaussian Process methodology used in this work has many properties that make it ideal for geochemical data
interpolation, but also has a few caveats. The first is that, in the standard approach, input data constraints are
expected to be Gaussian distributions. As discussed above and in Supporting Information S1, we adjust the
standard Gaussian Process fitting methodology by using a rejection sampling strategy to incorporate other types
of constraint.

The second limitation of the Gaussian Process approach is more fundamental. The two hyperparameters which
tune the fit describe the length scale and noise scale, as described above (Section 3). Here, we use the residence
time of each element as the length scale of the Gaussian Process, however those concepts are not identical. In
particular, as most signals we are reconstructing here are isotope ratios, the concept of elemental residence time is
not necessarily directly applicable. Nonetheless, we believe that using the residence time as a guide for the rate of
change in these signals is an improvement over using parametric methods, or non‐parametric methods with
arbitrary smoothing parameters. In particular, for δ11Bsw, we are not strongly reliant on the assumption that the
Gaussian Process length scale is equivalent to the residence time because Lemarchand et al. (2000) provide a
direct rate of change estimate which we use as a constraint. Given a residence time for boron of 10 Myr, and a rate
of change of δ11Bsw of 0.1 ‰/Myr, this implies a noise scale of 1 ‰. However, 1 ‰ is a small range for un-
certainty where there are no data constraints. Increasing the noise scale results in rates of change incompatible
with rate of change presented in Lemarchand et al. (2000) unless the length scale is commensurately increased—
however this is then inconsistent with our understanding of the residence time of boron in seawater. Our solution
to this is to use values which permit slightly faster changes than suggested by Lemarchand et al. (2000)—a length
scale of 10 Myr, but a noise scale of 2 ‰, then filtering out results which are incompatibly fast.

Using the Gaussian Process with the methodology described here is highly computationally intensive. Each
generated sample has only a small chance of being accepted, and it is necessary to try tens of millions of pos-
sibilities to achieve 10,000 viable statistical samples. It is inherent in the rejection sampling methodology to be
inefficient in this way, and the more criteria that are used (or the more restrictive those criteria are) the less
efficient this method becomes. For this use case, our approach takes approximately 40 hr of computational time on
a standard desktop machine to generate the requisite 10,000 samples. In future, we may look to alternative
statistical techniques to increase our efficiency and allow us to explore a greater range of possibilities, in
particular with respect to gradient limitations and signal smoothness.

Our reconstruction of δ11Bsw is also limited by our understanding of past ocean conditions. As discussed in
Section 1, most constraints on δ11Bsw are at some level dependent on models. Typically, a wide range of model
conditions were used to predict vertical gradients in δ13C and pH, and an even wider range was used in uncertainty
propagation to calculate these estimates (see for instance Greenop et al. (2017)). Nonetheless, it would be remiss
not to acknowledge that models are a simplification of reality, meaning it is possible that the ocean occupied a
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different mode in the past where the vertical gradients in δ13C and pH were decoupled or otherwise difficult to
predict. Overall, the data constraints in this work are contingent upon carbon cycle model simulations producing
realistic ranges for the δ13C versus pH gradient, and the validity of assumptions which determine AOU, while our
reconstruction itself is dependent on these data and the rate of change determined from modeling of the boron
cycle.

8. Conclusions
We provide Cenozoic reconstructions of δ11Bsw by collating existing data constraints and integrating these into a
Gaussian Process based statistical approach. This allows us to bring together varying types of constraint
(including central estimates, lower and upper limits, and other forms of distribution) while rigorously propagating
uncertainties. Our results suggest that δ11Bsw was slightly higher than previously thought during the Miocene, but
are generally in agreement with previous estimates of δ11Bsw during the remainder of the Cenozoic. Generally
speaking, uncertainties on δ11Bsw are approximately 1 ‰, apart from during the Neogene where large un-
certainties on data constraints propagate to large uncertainties in our reconstruction. Our higher estimated δ11Bsw

is indicative of lower Miocene pH than previously thought, though we acknowledge high uncertainties during this
time.

We see a notable correspondence between δ11B4 and δ
7Li, something which has previously been used to infer that

the evolution of δ11Bsw was likely similar to that of δ7Li (Raitzsch & Hönisch, 2013). However the evolution of
δ11Bsw constrained here shows that the majority of the Cenozoic change in δ11B4 was driven by pH, indicating that
links between the controls on pH and δ7Li are perhaps the more important control on the similar trajectories of
δ11B4 and δ

7Li.

Uncertainties in our reconstruction are largest where boron isotope data are sparse, such as during the Oligocene,
or where datapoints are in disagreement with one another, such as during the Neogene, and we encourage the
generation of future records to target these intervals. Looking forward, it would undoubtedly be helpful to find
more direct proxies for δ11Bsw, and to improve constraints on the various models which guide both the data
constraints and limits on the rate of change in δ11Bsw. However, using this method we are able to constrain δ11Bsw

to a range of±1‰ across most of the Cenozoic, improving current estimates. Results from this study can be used
to propagate uncertainties in δ11Bsw into future reconstructions of palaeo pH from boron isotopes and, by
extension, palaeo CO2. We provide both the metrics which describe our reconstruction of δ11Bsw (the median, and
95% confidence interval), and also 10,000 statistical samples of possible evolutions of δ11Bsw. Uncertainty in
δ11Bsw can then be propagated into future data products using a Monte Carlo approach as described in Section 6.
In addition we provide analogous information for all signals reconstructed here using the Gaussian Process
(δ11B4, pH, 87/86Sr, 187/188Os, and δ

7Li).

Data Availability Statement
All code used in and produced by this project is stored within our GitHub Repository: https://github.com/St‐
Andrews‐Isotope‐Geochemistry/d11Bsw‐Gaussian‐Process and archived using Zenodo (Whiteford, 2024b).
Data files associated with this project are archived using figshare (Whiteford, 2024a). Three data files are pro-
vided which include:

• Data output for δ11Bsw in the form of a .xlsx file, which contains both summary metrics and all 10,000 time
series realizations.

• Original data, metrics summary of the reconstruction, and 10,000 individual statistical samples for 87/86Sr,
187/188Os, and δ7Li in a .xlsx file.

• δ11B4 data input to the Gaussian Process, metrics summary of the reconstruction, and individual statistical
samples for δ11B4 and pH in a .xlsx file.

Two forms of output for δ11Bsw are given, because while the median and 95% confidence interval give a sense of
reasonable values and allow easy plotting, they are unable to convey the covariance embedded in each Gaussian
Process sample. Thus for uncertainty propagation in future calculations, we recommend using the time series
contained within the .xlsx file. This methodology allows propagation of both uncertainties in δ11Bsw and also the
rate of change of δ11Bsw as described in Section 6. Data for δ11B4 can be found as a supplementary table to J. W.
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Rae et al. (2021). Software used in the project is written in Python, and is available on our GitHub repository:
https://github.com/St‐Andrews‐Isotope‐Geochemistry/d11Bsw‐Gaussian‐Process (Whiteford, 2024b). It uses a
software package we've written to perform the statistical calculations, in particular representing distributions,
drawing samples, and performing the Gaussian Process interpolation. Scripts to perform the calculation, analyze
the output, and display the results are also included.
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