76 research outputs found
Intra- and inter-individual genetic differences in gene expression
Genetic variation is known to influence the amount of mRNA produced by a gene. Given that the molecular machines control mRNA levels of multiple genes, we expect genetic variation in the components of these machines would influence multiple genes in a similar fashion. In this study we show that this assumption is correct by using correlation of mRNA levels measured independently in the brain, kidney or liver of multiple, genetically typed, mice strains to detect shared genetic influences. These correlating groups of genes (CGG) have collective properties that account for 40-90% of the variability of their constituent genes and in some cases, but not all, contain genes encoding functionally related proteins. Critically, we show that the genetic influences are essentially tissue specific and consequently the same genetic variations in the one animal may up-regulate a CGG in one tissue but down-regulate the same CGG in a second tissue. We further show similarly paradoxical behaviour of CGGs within the same tissues of different individuals. The implication of this study is that this class of genetic variation can result in complex inter- and intra-individual and tissue differences and that this will create substantial challenges to the investigation of phenotypic outcomes, particularly in humans where multiple tissues are not readily available.


Detection of regulator genes and eQTLs in gene networks
Genetic differences between individuals associated to quantitative phenotypic
traits, including disease states, are usually found in non-coding genomic
regions. These genetic variants are often also associated to differences in
expression levels of nearby genes (they are "expression quantitative trait
loci" or eQTLs for short) and presumably play a gene regulatory role, affecting
the status of molecular networks of interacting genes, proteins and
metabolites. Computational systems biology approaches to reconstruct causal
gene networks from large-scale omics data have therefore become essential to
understand the structure of networks controlled by eQTLs together with other
regulatory genes, and to generate detailed hypotheses about the molecular
mechanisms that lead from genotype to phenotype. Here we review the main
analytical methods and softwares to identify eQTLs and their associated genes,
to reconstruct co-expression networks and modules, to reconstruct causal
Bayesian gene and module networks, and to validate predicted networks in
silico.Comment: minor revision with typos corrected; review article; 24 pages, 2
figure
The association between hip fracture and hip osteoarthritis: A case-control study
<p>Abstract</p> <p>Background</p> <p>There have been reports both supporting and refuting an inverse relationship between hip fracture and hip osteoarthritis (OA). We explore this relationship using a case-control study design.</p> <p>Methods</p> <p>Exclusion criteria were previous hip fracture (same side or contralateral side), age younger than 60 years, foreign nationality, pathological fracture, rheumatoid arthritis and cases were radiographic examinations were not found in the archives. We studied all subjects with hip fracture that remained after the exclusion process that were treated at Akureyri University Hospital, Iceland 1990-2008, n = 562 (74% women). Hip fracture cases were compared with a cohort of subjects with colon radiographs, n = 803 (54% women) to determine expected population prevalence of hip OA. Presence of radiographic hip OA was defined as a minimum joint space of 2.5 mm or less on an anteroposterior radiograph, or Kellgren and Lawrence grade 2 or higher. Possible causes of secondary osteoporosis were identified by review of medical records.</p> <p>Results</p> <p>The age-adjusted odds ratio (OR) for subjects with hip fracture having radiographic hip OA was 0.30 (95% confidence interval [95% CI] 0.12-0.74) for men and 0.33 (95% CI 0.19-0.58) for women, compared to controls. The probability for subjects with hip fracture and hip OA having a secondary cause of osteoporosis was three times higher than for subjects with hip fracture without hip OA.</p> <p>Conclusion</p> <p>The results of our study support an inverse relationship between hip fractures and hip OA.</p
The Evolution of Compact Binary Star Systems
We review the formation and evolution of compact binary stars consisting of
white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and
BHs are thought to be the primary astrophysical sources of gravitational waves
(GWs) within the frequency band of ground-based detectors, while compact
binaries of WDs are important sources of GWs at lower frequencies to be covered
by space interferometers (LISA). Major uncertainties in the current
understanding of properties of NSs and BHs most relevant to the GW studies are
discussed, including the treatment of the natal kicks which compact stellar
remnants acquire during the core collapse of massive stars and the common
envelope phase of binary evolution. We discuss the coalescence rates of binary
NSs and BHs and prospects for their detections, the formation and evolution of
binary WDs and their observational manifestations. Special attention is given
to AM CVn-stars -- compact binaries in which the Roche lobe is filled by
another WD or a low-mass partially degenerate helium-star, as these stars are
thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure
Managing Carbon Aspirations: The Influence of Corporate Climate Change Targets on Environmental Performance
Addressing climate change is among the most challenging ethical issues facing contemporary business and society. Unsustainable business activities are causing significant distributional and procedural injustices in areas such as public health and vulnerability to extreme weather events, primarily because of a distinction between primary emitters and those already experiencing the impacts of climate change. Business, as a significant contributor to climate change and beneficiary of externalizing environmental costs, has an obligation to address its environmental impacts. In this paper, we explore the role of firms’ climate change targets in shaping their emissions trends in the context of a large multi-country sample of companies. We contrast two intentions for setting emissions reductions targets: symbolic attempts to manage external stakeholder perceptions via “greenwashing” and substantive commitments to reducing environmental impacts. We argue that the attributes of firms’ climate change targets (their extent, form, and time horizon) are diagnostic of firms’ underlying intentions. Consistent with our hypotheses, while we find no overall effect of setting climate change targets on emissions, we show that targets characterized by a commitment to more ambitious emissions reductions, a longer target time frame, and absolute reductions in emissions are associated with significant reductions in firms’ emissions. Our evidence suggests the need for vigilance among policy-makers and environmental campaigners regarding the underlying intentions that accompany environmental management practices and shows that these can to some extent be diagnosed analytically
Stronger Neural Modulation by Visual Motion Intensity in Autism Spectrum Disorders
Theories of autism spectrum disorders (ASD) have focused on altered perceptual integration
of sensory features as a possible core deficit. Yet, there is little understanding of the
neuronal processing of elementary sensory features in ASD. For typically developed individuals,
we previously established a direct link between frequency-specific neural activity
and the intensity of a specific sensory feature: Gamma-band activity in the visual cortex
increased approximately linearly with the strength of visual motion. Using magnetoencephalography
(MEG), we investigated whether in individuals with ASD neural activity reflect the
coherence, and thus intensity, of visual motion in a similar fashion. Thirteen adult participants
with ASD and 14 control participants performed a motion direction discrimination task
with increasing levels of motion coherence. A polynomial regression analysis revealed that
gamma-band power increased significantly stronger with motion coherence in ASD compared
to controls, suggesting excessive visual activation with increasing stimulus intensity
originating from motion-responsive visual areas V3, V6 and hMT/V5. Enhanced neural
responses with increasing stimulus intensity suggest an enhanced response gain in ASD.
Response gain is controlled by excitatory-inhibitory interactions, which also drive high-frequency
oscillations in the gamma-band. Thus, our data suggest that a disturbed excitatoryinhibitory
balance underlies enhanced neural responses to coherent motion in ASD
- …